Spaces:
Sleeping
Sleeping
File size: 33,072 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
"""
Copyright©2024 Max-Planck-Gesellschaft zur Förderung
der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
for Intelligent Systems. All rights reserved.
Author: Marilyn Keller
See https://skel.is.tue.mpg.de/license.html for licensing and contact information.
"""
import os
import torch.nn as nn
import torch
import numpy as np
import pickle as pkl
from typing import NewType, Optional
from lib.body_models.skel.joints_def import curve_torch_3d, left_scapula, right_scapula
from lib.body_models.skel.osim_rot import ConstantCurvatureJoint, CustomJoint, EllipsoidJoint, PinJoint, WalkerKnee
from lib.body_models.skel.utils import build_homog_matrix, rotation_matrix_from_vectors, sparce_coo_matrix2tensor, with_zeros, matmul_chain
from dataclasses import dataclass, fields
from lib.body_models.skel.kin_skel import scaling_keypoints, pose_param_names, smpl_joint_corresp
import lib.body_models.skel.config as cg
Tensor = NewType('Tensor', torch.Tensor)
@dataclass
class ModelOutput:
vertices: Optional[Tensor] = None
joints: Optional[Tensor] = None
full_pose: Optional[Tensor] = None
global_orient: Optional[Tensor] = None
transl: Optional[Tensor] = None
v_shaped: Optional[Tensor] = None
def __getitem__(self, key):
return getattr(self, key)
def get(self, key, default=None):
return getattr(self, key, default)
def __iter__(self):
return self.keys()
def keys(self):
keys = [t.name for t in fields(self)]
return iter(keys)
def values(self):
values = [getattr(self, t.name) for t in fields(self)]
return iter(values)
def items(self):
data = [(t.name, getattr(self, t.name)) for t in fields(self)]
return iter(data)
@dataclass
class SKELOutput(ModelOutput):
betas: Optional[Tensor] = None
body_pose: Optional[Tensor] = None
skin_verts: Optional[Tensor] = None
skel_verts: Optional[Tensor] = None
joints: Optional[Tensor] = None
joints_ori: Optional[Tensor] = None
betas: Optional[Tensor] = None
poses: Optional[Tensor] = None
trans : Optional[Tensor] = None
pose_offsets : Optional[Tensor] = None
joints_tpose : Optional[Tensor] = None
v_skin_shaped : Optional[Tensor] = None
class SKEL(nn.Module):
num_betas = 10
def __init__(self, gender, model_path=None, custom_joint_reg_path=None, **kwargs):
super(SKEL, self).__init__()
if gender not in ['male', 'female']:
raise RuntimeError(f'Invalid Gender, got {gender}')
self.gender = gender
if model_path is None:
# skel_file = f"/Users/mkeller2/Data/skel_models_v1.0/skel_{gender}.pkl"
skel_file = os.path.join(cg.skel_folder, f"skel_{gender}.pkl")
else:
skel_file = os.path.join(model_path, f"skel_{gender}.pkl")
assert os.path.exists(skel_file), f"Skel model file {skel_file} does not exist"
skel_data = pkl.load(open(skel_file, 'rb'))
# Check that the version of the skel model is compatible with this loader
assert 'version' in skel_data, f"Expected version 1.1.1 of the SKEL picke. Please download the latest skel pkl versions from https://skel.is.tue.mpg.de/download.html"
version = skel_data['version']
assert version == '1.1.1', f"Expected version 1.1.1, got {version}. Please download the latest skel pkl versions from https://skel.is.tue.mpg.de/download.html"
self.num_betas = 10
self.num_q_params = 46
self.bone_names = skel_data['bone_names']
self.num_joints = skel_data['J_regressor_osim'].shape[0]
self.num_joints_smpl = skel_data['J_regressor'].shape[0]
self.joints_name = skel_data['joints_name']
self.pose_params_name = skel_data['pose_params_name']
# register the template meshes
self.register_buffer('skin_template_v', torch.FloatTensor(skel_data['skin_template_v']))
self.register_buffer('skin_f', torch.LongTensor(skel_data['skin_template_f']))
self.register_buffer('skel_template_v', torch.FloatTensor(skel_data['skel_template_v']))
self.register_buffer('skel_f', torch.LongTensor(skel_data['skel_template_f']))
# Shape corrective blend shapes
self.register_buffer('shapedirs', torch.FloatTensor(np.array(skel_data['shapedirs'][:,:,:self.num_betas])))
self.register_buffer('posedirs', torch.FloatTensor(np.array(skel_data['posedirs'])))
# Model sparse joints regressor, regresses joints location from a mesh
self.register_buffer('J_regressor', sparce_coo_matrix2tensor(skel_data['J_regressor']))
# Regress the anatomical joint location with a regressor learned from BioAmass
if custom_joint_reg_path is not None:
J_regressor_skel = pkl.load(open(custom_joint_reg_path, 'rb'))
if 'scipy.sparse' in str(type(J_regressor_skel)):
J_regressor_skel = J_regressor_skel.todense()
self.register_buffer('J_regressor_osim', torch.FloatTensor(J_regressor_skel))
print('WARNING: Using custom joint regressor')
else:
self.register_buffer('J_regressor_osim', sparce_coo_matrix2tensor(skel_data['J_regressor_osim'], make_dense=True))
self.register_buffer('per_joint_rot', torch.FloatTensor(skel_data['per_joint_rot']))
# Skin model skinning weights
self.register_buffer('skin_weights', sparce_coo_matrix2tensor(skel_data['skin_weights']))
# Skeleton model skinning weights
self.register_buffer('skel_weights', sparce_coo_matrix2tensor(skel_data['skel_weights']))
self.register_buffer('skel_weights_rigid', sparce_coo_matrix2tensor(skel_data['skel_weights_rigid']))
# Kinematic tree of the model
self.register_buffer('kintree_table', torch.from_numpy(skel_data['osim_kintree_table'].astype(np.int64)))
self.register_buffer('parameter_mapping', torch.from_numpy(skel_data['parameter_mapping'].astype(np.int64)))
# transformation from osim can pose to T pose
self.register_buffer('tpose_transfo', torch.FloatTensor(skel_data['tpose_transfo']))
# transformation from osim can pose to A pose
self.register_buffer('apose_transfo', torch.FloatTensor(skel_data['apose_transfo']))
self.register_buffer('apose_rel_transfo', torch.FloatTensor(skel_data['apose_rel_transfo']))
# Indices of bones which orientation should not vary with beta in T pose:
joint_idx_fixed_beta = [0, 5, 10, 13, 18, 23]
self.register_buffer('joint_idx_fixed_beta', torch.IntTensor(joint_idx_fixed_beta))
id_to_col = {self.kintree_table[1, i].item(): i for i in range(self.kintree_table.shape[1])}
self.register_buffer('parent', torch.LongTensor(
[id_to_col[self.kintree_table[0, it].item()] for it in range(1, self.kintree_table.shape[1])]))
# child array
# TODO create this array in the SKEL creator
child_array = []
Nj = self.num_joints
for i in range(0, Nj):
try:
j_array = torch.where(self.kintree_table[0] == i)[0] # candidate child lines
if len(j_array) == 0:
child_index = 0
else:
j = j_array[0]
if j>=len(self.kintree_table[1]):
child_index = 0
else:
child_index = self.kintree_table[1,j].item()
child_array.append(child_index)
except:
import ipdb; ipdb.set_trace()
# print(f"child_array: ")
# [print(i,child_array[i]) for i in range(0, Nj)]
self.register_buffer('child', torch.LongTensor(child_array))
# Instantiate joints
self.joints_dict = nn.ModuleList([
CustomJoint(axis=[[0,0,1], [1,0,0], [0,1,0]], axis_flip=[1, 1, 1]), # 0 pelvis
CustomJoint(axis=[[0,0,1], [1,0,0], [0,1,0]], axis_flip=[1, 1, 1]), # 1 femur_r
WalkerKnee(), # 2 tibia_r
PinJoint(parent_frame_ori = [0.175895, -0.105208, 0.0186622]), # 3 talus_r Field taken from .osim Joint-> frames -> PhysicalOffsetFrame -> orientation
PinJoint(parent_frame_ori = [-1.76818999, 0.906223, 1.8196000]), # 4 calcn_r
PinJoint(parent_frame_ori = [-3.141589999, 0.6199010, 0]), # 5 toes_r
CustomJoint(axis=[[0,0,1], [1,0,0], [0,1,0]], axis_flip=[1, -1, -1]), # 6 femur_l
WalkerKnee(), # 7 tibia_l
PinJoint(parent_frame_ori = [0.175895, -0.105208, 0.0186622]), # 8 talus_l
PinJoint(parent_frame_ori = [1.768189999 ,-0.906223, 1.8196000]), # 9 calcn_l
PinJoint(parent_frame_ori = [-3.141589999, -0.6199010, 0]), # 10 toes_l
ConstantCurvatureJoint(axis=[[1,0,0], [0,0,1], [0,1,0]], axis_flip=[1, 1, 1]), # 11 lumbar
ConstantCurvatureJoint(axis=[[1,0,0], [0,0,1], [0,1,0]], axis_flip=[1, 1, 1]), # 12 thorax
ConstantCurvatureJoint(axis=[[1,0,0], [0,0,1], [0,1,0]], axis_flip=[1, 1, 1]), # 13 head
EllipsoidJoint(axis=[[0,1,0], [0,0,1], [1,0,0]], axis_flip=[1, -1, -1]), # 14 scapula_r
CustomJoint(axis=[[1,0,0], [0,1,0], [0,0,1]], axis_flip=[1, 1, 1]), # 15 humerus_r
CustomJoint(axis=[[0.0494, 0.0366, 0.99810825]], axis_flip=[[1]]), # 16 ulna_r
CustomJoint(axis=[[-0.01716099, 0.99266564, -0.11966796]], axis_flip=[[1]]), # 17 radius_r
CustomJoint(axis=[[1,0,0], [0,0,-1]], axis_flip=[1, 1]), # 18 hand_r
EllipsoidJoint(axis=[[0,1,0], [0,0,1], [1,0,0]], axis_flip=[1, 1, 1]), # 19 scapula_l
CustomJoint(axis=[[1,0,0], [0,1,0], [0,0,1]], axis_flip=[1, 1, 1]), # 20 humerus_l
CustomJoint(axis=[[-0.0494, -0.0366, 0.99810825]], axis_flip=[[1]]), # 21 ulna_l
CustomJoint(axis=[[0.01716099, -0.99266564, -0.11966796]], axis_flip=[[1]]), # 22 radius_l
CustomJoint(axis=[[-1,0,0], [0,0,-1]], axis_flip=[1, 1]), # 23 hand_l
])
def pose_params_to_rot(self, osim_poses):
""" Transform the pose parameters to 3x3 rotation matrices
Each parameter is mapped to a joint as described in joint_dict.
The specific joint object is then used to compute the rotation matrix.
"""
B = osim_poses.shape[0]
Nj = self.num_joints
ident = torch.eye(3, dtype=osim_poses.dtype).to(osim_poses.device)
Rp = ident.unsqueeze(0).unsqueeze(0).repeat(B, Nj,1,1)
tp = torch.zeros(B, Nj, 3).to(osim_poses.device)
start_index = 0
for i in range(0, Nj):
joint_object = self.joints_dict[i]
end_index = start_index + joint_object.nb_dof
Rp[:, i] = joint_object.q_to_rot(osim_poses[:, start_index:end_index])
start_index = end_index
return Rp, tp
def params_name_to_index(self, param_name):
assert param_name in pose_param_names
param_index = pose_param_names.index(param_name)
return param_index
def forward(self, poses, betas, trans, poses_type='skel', skelmesh=True, dJ=None, pose_dep_bs=True):
"""
params
poses : B x 46 tensor of pose parameters
betas : B x 10 tensor of shape parameters, same as SMPL
trans : B x 3 tensor of translation
poses_type : str, 'skel', should not be changed
skelmesh : bool, if True, returns the skeleton vertices. The skeleton mesh is heavy so to fit on GPU memory, set to False when not needed.
dJ : B x 24 x 3 tensor of the offset of the joints location from the anatomical regressor. If None, the offset is set to 0.
pose_dep_bs : bool, if True (default), applies the pose dependant blend shapes. If False, the pose dependant blend shapes are not applied.
return SKELOutput class with the following fields:
betas : Bx10 tensor of shape parameters
poses : Bx46 tensor of pose parameters
skin_verts : Bx6890x3 tensor of skin vertices
skel_verts : tensor of skeleton vertices
joints : Bx24x3 tensor of joints location
joints_ori : Bx24x3x3 tensor of joints orientation
trans : Bx3 pose dependant blend shapes offsets
pose_offsets : Bx6080x3 pose dependant blend shapes offsets
joints_tpose : Bx24x3 3D joints location in T pose
In this function we use the following conventions:
B : batch size
Ns : skin vertices
Nk : skeleton vertices
"""
Ns = self.skin_template_v.shape[0] # nb skin vertices
Nk = self.skel_template_v.shape[0] # nb skeleton vertices
Nj = self.num_joints
B = poses.shape[0]
device = poses.device
# Check the shapes of the inputs
assert len(betas.shape) == 2, f"Betas should be of shape (B, {self.num_betas}), but got {betas.shape}"
assert poses.shape[0] == betas.shape[0], f"Expected poses and betas to have the same batch size, but got {poses.shape[0]} and {betas.shape[0]}"
assert poses.shape[0] == trans.shape[0], f"Expected poses and betas to have the same batch size, but got {poses.shape[0]} and {trans.shape[0]}"
if dJ is not None:
assert len(dJ.shape) == 3, f"Expected dJ to have shape (B, {Nj}, 3), but got {dJ.shape}"
assert dJ is None or dJ.shape[0] == B, f"Expected dJ to have the same batch size as poses, but got {dJ.shape[0]} and {poses.shape[0]}"
assert dJ.shape[1] == Nj, f"Expected dJ to have the same number of joints as the model, but got {dJ.shape[1]} and {Nj}"
# Check the device of the inputs
assert betas.device == device, f"Betas should be on device {device}, but got {betas.device}"
assert trans.device == device, f"Trans should be on device {device}, but got {trans.device}"
skin_v0 = self.skin_template_v[None, :]
skel_v0 = self.skel_template_v[None, :]
betas = betas[:, :, None] # TODO Name the expanded beta differently
# TODO clean this part
assert poses_type in ['skel', 'bsm'], f"got {poses_type}"
if poses_type == 'bsm':
assert poses.shape[1] == self.num_q_params - 3, f'With poses_type bsm, expected parameters of shape (B, {self.num_q_params - 3}, got {poses.shape}'
poses_bsm = poses
poses_skel = torch.zeros(B, self.num_q_params)
poses_skel[:,:3] = poses_bsm[:, :3]
trans = poses_bsm[:, 3:6] # In BSM parametrization, the hips translation is given by params 3 to 5
poses_skel[:, 3:] = poses_bsm
poses = poses_skel
else:
assert poses.shape[1] == self.num_q_params, f'With poses_type skel, expected parameters of shape (B, {self.num_q_params}), got {poses.shape}'
pass
# Load poses as expected
# Distinction bsm skel. by default it will be bsm
# ------- Shape ----------
# Apply the beta offset to the template
shapedirs = self.shapedirs.view(-1, self.num_betas)[None, :].expand(B, -1, -1) # B x D*Ns x num_betas
v_shaped = skin_v0 + torch.matmul(shapedirs, betas).view(B, Ns, 3)
# ------- Joints ----------
# Regress the anatomical joint location
J = torch.einsum('bik,ji->bjk', [v_shaped, self.J_regressor_osim]) # BxJx3 # osim regressor
# J = self.apose_transfo[:, :3, -1].view(1, Nj, 3).expand(B, -1, -1) # Osim default pose joints location
if dJ is not None:
J = J + dJ
J_tpose = J.clone()
# Local translation
J_ = J.clone() # BxJx3
J_[:, 1:, :] = J[:, 1:, :] - J[:, self.parent, :]
t = J_[:, :, :, None] # BxJx3x1
# ------- Bones transformation matrix----------
# Bone initial transform to go from unposed to SMPL T pose
Rk01 = self.compute_bone_orientation(J, J_)
# BSM default pose rotations
Ra = self.apose_rel_transfo[:, :3, :3].view(1, Nj, 3,3).expand(B, Nj, 3, 3)
# Local bone rotation given by the pose param
Rp, tp = self.pose_params_to_rot(poses) # BxNjx3x3 pose params to rotation
R = matmul_chain([Rk01, Ra.transpose(2,3), Rp, Ra, Rk01.transpose(2,3)])
###### Compute translation for non pure rotation joints
t_posed = t.clone()
# Scapula
thorax_width = torch.norm(J[:, 19, :] - J[:, 14, :], dim=1) # Distance between the two scapula joints, size B
thorax_height = torch.norm(J[:, 12, :] - J[:, 11, :], dim=1) # Distance between the two scapula joints, size B
angle_abduction = poses[:,26]
angle_elevation = poses[:,27]
angle_rot = poses[:,28]
angle_zero = torch.zeros_like(angle_abduction)
t_posed[:,14] = t_posed[:,14] + \
(right_scapula(angle_abduction, angle_elevation, angle_rot, thorax_width, thorax_height).view(-1,3,1)
- right_scapula(angle_zero, angle_zero, angle_zero, thorax_width, thorax_height).view(-1,3,1))
angle_abduction = poses[:,36]
angle_elevation = poses[:,37]
angle_rot = poses[:,38]
angle_zero = torch.zeros_like(angle_abduction)
t_posed[:,19] = t_posed[:,19] + \
(left_scapula(angle_abduction, angle_elevation, angle_rot, thorax_width, thorax_height).view(-1,3,1)
- left_scapula(angle_zero, angle_zero, angle_zero, thorax_width, thorax_height).view(-1,3,1))
# Knee_r
# TODO add the Walker knee offset
# bone_scale = self.compute_bone_scale(J_,J, skin_v0, v_shaped)
# f1 = poses[:, 2*3+2].clone()
# scale_femur = bone_scale[:, 2]
# factor = 0.076/0.080 * scale_femur # The template femur medial laterak spacing #66
# f = -f1*180/torch.pi #knee_flexion
# varus = (0.12367*f)-0.0009*f**2
# introt = 0.3781*f-0.001781*f**2
# ydis = (-0.0683*f
# + 8.804e-4 * f**2
# - 3.750e-06*f**3
# )/1000*factor # up-down
# zdis = (-0.1283*f
# + 4.796e-4 * f**2)/1000*factor #
# import ipdb; ipdb.set_trace()
# poses[:, 9] = poses[:, 9] + varus
# t_posed[:,2] = t_posed[:,2] + torch.stack([torch.zeros_like(ydis), ydis, zdis], dim=1).view(-1,3,1)
# poses[:, 2*3+2]=0
# t_unposed = torch.zeros_like(t_posed)
# t_unposed[:,2] = torch.stack([torch.zeros_like(ydis), ydis, zdis], dim=1).view(-1,3,1)
# Spine
lumbar_bending = poses[:,17]
lumbar_extension = poses[:,18]
angle_zero = torch.zeros_like(lumbar_bending)
interp_t = torch.ones_like(lumbar_bending)
l = torch.abs(J[:, 11, 1] - J[:, 0, 1]) # Length of the spine section along y axis
t_posed[:,11] = t_posed[:,11] + \
(curve_torch_3d(lumbar_bending, lumbar_extension, t=interp_t, l=l)
- curve_torch_3d(angle_zero, angle_zero, t=interp_t, l=l))
thorax_bending = poses[:,20]
thorax_extension = poses[:,21]
angle_zero = torch.zeros_like(thorax_bending)
interp_t = torch.ones_like(thorax_bending)
l = torch.abs(J[:, 12, 1] - J[:, 11, 1]) # Length of the spine section
t_posed[:,12] = t_posed[:,12] + \
(curve_torch_3d(thorax_bending, thorax_extension, t=interp_t, l=l)
- curve_torch_3d(angle_zero, angle_zero, t=interp_t, l=l))
head_bending = poses[:, 23]
head_extension = poses[:,24]
angle_zero = torch.zeros_like(head_bending)
interp_t = torch.ones_like(head_bending)
l = torch.abs(J[:, 13, 1] - J[:, 12, 1]) # Length of the spine section
t_posed[:,13] = t_posed[:,13] + \
(curve_torch_3d(head_bending, head_extension, t=interp_t, l=l)
- curve_torch_3d(angle_zero, angle_zero, t=interp_t, l=l))
# ------- Body surface transformation matrix----------
G_ = torch.cat([R, t_posed], dim=-1) # BxJx3x4 local transformation matrix
pad_row = torch.FloatTensor([0, 0, 0, 1]).to(device).view(1, 1, 1, 4).expand(B, Nj, -1, -1) # BxJx1x4
G_ = torch.cat([G_, pad_row], dim=2) # BxJx4x4 padded to be 4x4 matrix an enable multiplication for the kinematic chain
# Global transform
G = [G_[:, 0].clone()]
for i in range(1, Nj):
G.append(torch.matmul(G[self.parent[i - 1]], G_[:, i, :, :]))
G = torch.stack(G, dim=1)
# ------- Pose dependant blend shapes ----------
if pose_dep_bs is False:
v_shaped_pd = v_shaped
else:
# Note : Those should be retrained for SKEL as the SKEL joints location are different from SMPL.
# But the current version lets use get decent pose dependant deformations for the shoulders, belly and knies
ident = torch.eye(3, dtype=v_shaped.dtype, device=device)
# We need the per SMPL joint bone transform to compute pose dependant blend shapes.
# Initialize each joint rotation with identity
Rsmpl = ident.unsqueeze(0).unsqueeze(0).expand(B, self.num_joints_smpl, -1, -1).clone() # BxNjx3x3
Rskin = G_[:, :, :3, :3] # BxNjx3x3
Rsmpl[:, smpl_joint_corresp] = Rskin[:] # BxNjx3x3 pose params to rotation
pose_feature = Rsmpl[:, 1:].view(B, -1, 3, 3) - ident
pose_offsets = torch.matmul(pose_feature.view(B, -1),
self.posedirs.view(Ns*3, -1).T).view(B, -1, 3)
v_shaped_pd = v_shaped + pose_offsets
##########################################################################################
#Transform skin mesh
############################################################################################
# Apply global transformation to the template mesh
rest = torch.cat([J, torch.zeros(B, Nj, 1).to(device)], dim=2).view(B, Nj, 4, 1) # BxJx4x1
zeros = torch.zeros(B, Nj, 4, 3).to(device) # BxJx4x3
rest = torch.cat([zeros, rest], dim=-1) # BxJx4x4
rest = torch.matmul(G, rest) # This is a 4x4 transformation matrix that only contains translation to the rest pose joint location
Gskin = G - rest
# Compute per vertex transformation matrix (after weighting)
T = torch.matmul(self.skin_weights, Gskin.permute(1, 0, 2, 3).contiguous().view(Nj, -1)).view(Ns, B, 4,4).transpose(0, 1)
rest_shape_h = torch.cat([v_shaped_pd, torch.ones_like(v_shaped_pd)[:, :, [0]]], dim=-1)
v_posed = torch.matmul(T, rest_shape_h[:, :, :, None])[:, :, :3, 0]
# translation
v_trans = v_posed + trans[:,None,:]
##########################################################################################
#Transform joints
############################################################################################
# import ipdb; ipdb.set_trace()
root_transform = with_zeros(torch.cat((R[:,0],J[:,0][:,:,None]),2))
results = [root_transform]
for i in range(0, self.parent.shape[0]):
transform_i = with_zeros(torch.cat((R[:, i + 1], t_posed[:,i+1]), 2))
curr_res = torch.matmul(results[self.parent[i]],transform_i)
results.append(curr_res)
results = torch.stack(results, dim=1)
posed_joints = results[:, :, :3, 3]
J_transformed = posed_joints + trans[:,None,:]
##########################################################################################
# Transform skeleton
############################################################################################
if skelmesh:
G_bones = None
# Shape the skeleton by scaling its bones
skel_rest_shape_h = torch.cat([skel_v0, torch.ones_like(skel_v0)[:, :, [0]]], dim=-1).expand(B, Nk, -1) # (1,Nk,3)
# compute the bones scaling from the kinematic tree and skin mesh
#with torch.no_grad():
# TODO: when dJ is optimized the shape of the mesh should be affected by the gradients
bone_scale = self.compute_bone_scale(J_, v_shaped, skin_v0)
# Apply bone meshes scaling:
skel_v_shaped = torch.cat([(torch.matmul(bone_scale[:,:,0], self.skel_weights_rigid.T) * skel_rest_shape_h[:, :, 0])[:, :, None],
(torch.matmul(bone_scale[:,:,1], self.skel_weights_rigid.T) * skel_rest_shape_h[:, :, 1])[:, :, None],
(torch.matmul(bone_scale[:,:,2], self.skel_weights_rigid.T) * skel_rest_shape_h[:, :, 2])[:, :, None],
(torch.ones(B, Nk, 1).to(device))
], dim=-1)
# Align the bones with the proper axis
Gk01 = build_homog_matrix(Rk01, J.unsqueeze(-1)) # BxJx4x4
T = torch.matmul(self.skel_weights_rigid, Gk01.permute(1, 0, 2, 3).contiguous().view(Nj, -1)).view(Nk, B, 4,4).transpose(0, 1) #[1, 48757, 3, 3]
skel_v_align = torch.matmul(T, skel_v_shaped[:, :, :, None])[:, :, :, 0]
# This transfo will be applied with weights, effectively unposing the whole skeleton mesh in each joint frame.
# Then, per joint weighted transformation can then be applied
G_tpose_to_unposed = build_homog_matrix(torch.eye(3).view(1,1,3,3).expand(B, Nj, 3, 3).to(device), -J.unsqueeze(-1)) # BxJx4x4
G_skel = torch.matmul(G, G_tpose_to_unposed)
G_bones = torch.matmul(G, Gk01)
T = torch.matmul(self.skel_weights, G_skel.permute(1, 0, 2, 3).contiguous().view(Nj, -1)).view(Nk, B, 4,4).transpose(0, 1)
skel_v_posed = torch.matmul(T, skel_v_align[:, :, :, None])[:, :, :3, 0]
skel_trans = skel_v_posed + trans[:,None,:]
else:
skel_trans = skel_v0
Gk01 = build_homog_matrix(Rk01, J.unsqueeze(-1)) # BxJx4x4
G_bones = torch.matmul(G, Gk01)
joints = J_transformed
skin_verts = v_trans
skel_verts = skel_trans
joints_ori = G_bones[:,:,:3,:3]
if skin_verts.max() > 1e3:
import ipdb; ipdb.set_trace()
output = SKELOutput(skin_verts=skin_verts,
skel_verts=skel_verts,
joints=joints,
joints_ori=joints_ori,
betas=betas,
poses=poses,
trans = trans,
pose_offsets = pose_offsets,
joints_tpose = J_tpose,
v_shaped = v_shaped,)
return output
def compute_bone_scale(self, J_, v_shaped, skin_v0):
# index [0, 1, 2, 3 4, 5, , ...] # todo add last one, figure out bone scale indices
# J_ bone vectors [j0, j1-j0, j2-j0, j3-j0, j4-j1, j5-j2, ...]
# norm(J) = length of the bone [j0, j1-j0, j2-j0, j3-j0, j4-j1, j5-j2, ...]
# self.joints_sockets [j0, j1-j0, j2-j0, j3-j0, j4-j1, j5-j2, ...]
# self.skel_weights [j0, j1, j2, j3, j4, j5, ...]
B = J_.shape[0]
Nj = J_.shape[1]
bone_scale = torch.ones(B, Nj).to(J_.device)
# BSM template joints location
osim_joints_r = self.apose_rel_transfo[:, :3, 3].view(1, Nj, 3).expand(B, Nj, 3).clone()
length_bones_bsm = torch.norm(osim_joints_r, dim=-1).expand(B, -1)
length_bones_smpl = torch.norm(J_, dim=-1) # (B, Nj)
bone_scale_parent = length_bones_smpl / length_bones_bsm
non_leaf_node = (self.child != 0)
bone_scale[:,non_leaf_node] = (bone_scale_parent[:,self.child])[:,non_leaf_node]
# Ulna should have the same scale as radius
bone_scale[:,16] = bone_scale[:,17]
bone_scale[:,16] = bone_scale[:,17]
bone_scale[:,21] = bone_scale[:,22]
bone_scale[:,21] = bone_scale[:,22]
# Thorax
# Thorax scale is defined by the relative position of the thorax to its child joint, not parent joint as for other bones
bone_scale[:, 12] = bone_scale[:, 11]
# Lumbars
# Lumbar scale is defined by the y relative position of the lumbar joint
length_bones_bsm = torch.abs(osim_joints_r[:,11, 1])
length_bones_smpl = torch.abs(J_[:, 11, 1]) # (B, Nj)
bone_scale_lumbar = length_bones_smpl / length_bones_bsm
bone_scale[:, 11] = bone_scale_lumbar
# Expand to 3 dimensions and adjest scaling to avoid skin-skeleton intersection and handle the scaling of leaf body parts (hands, feet)
bone_scale = bone_scale.reshape(B, Nj, 1).expand(B, Nj, 3).clone()
for (ji, doi, dsi), (v1, v2) in scaling_keypoints.items():
bone_scale[:, ji, doi] = ((v_shaped[:,v1] - v_shaped[:, v2])/ (skin_v0[:,v1] - skin_v0[:, v2]))[:,dsi] # Top over chin
#TODO: Add keypoints for feet scaling in scaling_keypoints
# Adjust thorax front-back scaling
# TODO fix this part
v1 = 3027 #thorax back
v2 = 3495 #thorax front
scale_thorax_up = ((v_shaped[:,v1] - v_shaped[:, v2])/ (skin_v0[:,v1] - skin_v0[:, v2]))[:,2] # good for large people
v2 = 3506 #sternum
scale_thorax_sternum = ((v_shaped[:,v1] - v_shaped[:, v2])/ (skin_v0[:,v1] - skin_v0[:, v2]))[:,2] # Good for skinny people
bone_scale[:, 12, 0] = torch.min(scale_thorax_up, scale_thorax_sternum) # Avoids super expanded ribcage for large people and sternum outside for skinny people
#lumbars, adjust width to be same as thorax
bone_scale[:, 11, 0] = bone_scale[:, 12, 0]
return bone_scale
def compute_bone_orientation(self, J, J_):
"""Compute each bone orientation in T pose """
# method = 'unposed'
# method = 'learned'
method = 'learn_adjust'
B = J_.shape[0]
Nj = J_.shape[1]
# Create an array of bone vectors the bone meshes should be aligned to.
bone_vect = torch.zeros_like(J_) # / torch.norm(J_, dim=-1)[:, :, None] # (B, Nj, 3)
bone_vect[:] = J_[:, self.child] # Most bones are aligned between their parent and child joint
bone_vect[:,16] = bone_vect[:,16]+bone_vect[:,17] # We want to align the ulna to the segment joint 16 to 18
bone_vect[:,21] = bone_vect[:,21]+bone_vect[:,22] # Same other ulna
# TODO Check indices here
# bone_vect[:,13] = bone_vect[:,12].clone()
bone_vect[:,12] = bone_vect.clone()[:,11].clone() # We want to align the thorax on the thorax-lumbar segment
# bone_vect[:,11] = bone_vect[:,0].clone()
osim_vect = self.apose_rel_transfo[:, :3, 3].clone().view(1, Nj, 3).expand(B, Nj, 3).clone()
osim_vect[:] = osim_vect[:,self.child]
osim_vect[:,16] = osim_vect[:,16]+osim_vect[:,17] # We want to align the ulna to the segment joint 16 to 18
osim_vect[:,21] = osim_vect[:,21]+osim_vect[:,22] # We want to align the ulna to the segment joint 16 to 18
# TODO: remove when this has been checked
# import matplotlib.pyplot as plt
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# ax.plot(osim_vect[:,0,0], osim_vect[:,0,1], osim_vect[:,0,2], color='r')
# plt.show()
Gk = torch.eye(3, device=J_.device).repeat(B, Nj, 1, 1)
if method == 'unposed':
return Gk
elif method == 'learn_adjust':
Gk_learned = self.per_joint_rot.view(1, Nj, 3, 3).expand(B, -1, -1, -1) #load learned rotation
osim_vect_corr = torch.matmul(Gk_learned, osim_vect.unsqueeze(-1)).squeeze(-1)
Gk[:,:] = rotation_matrix_from_vectors(osim_vect_corr, bone_vect)
# set nan to zero
# TODO: Check again why the following line was required
Gk[torch.isnan(Gk)] = 0
# Gk[:,[18,23]] = Gk[:,[16,21]] # hand has same orientation as ulna
# Gk[:,[5,10]] = Gk[:,[4,9]] # toe has same orientation as calcaneus
# Gk[:,[0,11,12,13,14,19]] = torch.eye(3, device=J_.device).view(1,3,3).expand(B, 6, 3, 3) # pelvis, torso and shoulder blade orientation does not vary with beta, leave it
Gk[:, self.joint_idx_fixed_beta] = torch.eye(3, device=J_.device).view(1,3,3).expand(B, len(self.joint_idx_fixed_beta), 3, 3) # pelvis, torso and shoulder blade orientation should not vary with beta, leave it
Gk = torch.matmul(Gk, Gk_learned)
elif method == 'learned':
""" Apply learned transformation"""
Gk = self.per_joint_rot.view(1, Nj, 3, 3).expand(B, -1, -1, -1)
else:
raise NotImplementedError
return Gk
|