Spaces:
Sleeping
Sleeping
File size: 20,327 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
"""
Copyright©2023 Max-Planck-Gesellschaft zur Förderung
der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
for Intelligent Systems. All rights reserved.
Author: Soyong Shin, Marilyn Keller
See https://skel.is.tue.mpg.de/license.html for licensing and contact information.
"""
import traceback
import math
import os
import pickle
import torch
import smplx
import omegaconf
import torch.nn.functional as F
from psbody.mesh import Mesh, MeshViewer, MeshViewers
from tqdm import trange
from pathlib import Path
import lib.body_models.skel.config as cg
from lib.body_models.skel.skel_model import SKEL
from .losses import compute_anchor_pose, compute_anchor_trans, compute_pose_loss, compute_scapula_loss, compute_spine_loss, compute_time_loss, pretty_loss_print
from .utils import location_to_spheres, to_numpy, to_params, to_torch
from .align_config import config
from .align_config_joint import config as config_joint
class SkelFitter(object):
def __init__(self, gender, device, num_betas=10, export_meshes=False, joint_optim=False) -> None:
self.smpl = smplx.create(cg.smpl_folder, model_type='smpl', gender=gender, num_betas=num_betas, batch_size=1, export_meshes=False).to(device)
self.skel = SKEL(gender).to(device)
self.gender = gender
self.device = device
self.num_betas = num_betas
# Instanciate masks used for the vertex to vertex fitting
fitting_mask_file = Path(__file__).parent / 'riggid_parts_mask.pkl'
fitting_indices = pickle.load(open(fitting_mask_file, 'rb'))
fitting_mask = torch.zeros(6890, dtype=torch.bool, device=self.device)
fitting_mask[fitting_indices] = 1
self.fitting_mask = fitting_mask.reshape(1, -1, 1).to(self.device) # 1xVx1 to be applied to verts that are BxVx3
smpl_torso_joints = [0,3]
verts_mask = (self.smpl.lbs_weights[:,smpl_torso_joints]>0.5).sum(dim=-1)>0
self.torso_verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1) # Because verts are of shape BxVx3
self.export_meshes = export_meshes
# make the cfg being an object using omegaconf
if joint_optim:
self.cfg = omegaconf.OmegaConf.create(config_joint)
else:
self.cfg = omegaconf.OmegaConf.create(config)
# Instanciate the mesh viewer to visualize the fitting
if('DISABLE_VIEWER' in os.environ):
self.mv = None
print("\n DISABLE_VIEWER flag is set, running in headless mode")
else:
self.mv = MeshViewers((1,2), keepalive=self.cfg.keepalive_meshviewer)
def run_fit(self,
trans_in,
betas_in,
poses_in,
batch_size=20,
skel_data_init=None,
force_recompute=False,
debug=False,
watch_frame=0,
freevert_mesh=None,
opt_sequence=False,
fix_poses=False,
variant_exp=''):
"""Align SKEL to a SMPL sequence."""
self.nb_frames = poses_in.shape[0]
self.watch_frame = watch_frame
self.is_skel_data_init = skel_data_init is not None
self.force_recompute = force_recompute
print('Fitting {} frames'.format(self.nb_frames))
print('Watching frame: {}'.format(watch_frame))
# Initialize SKEL torch params
body_params = self._init_params(betas_in, poses_in, trans_in, skel_data_init, variant_exp)
# We cut the whole sequence in batches for parallel optimization
if batch_size > self.nb_frames:
batch_size = self.nb_frames
print('Batch size is larger than the number of frames. Setting batch size to {}'.format(batch_size))
n_batch = math.ceil(self.nb_frames/batch_size)
pbar = trange(n_batch, desc='Running batch optimization')
# Initialize the res dict to store the per frame result skel parameters
out_keys = ['poses', 'betas', 'trans']
if self.export_meshes:
out_keys += ['skel_v', 'skin_v', 'smpl_v']
res_dict = {key: [] for key in out_keys}
res_dict['gender'] = self.gender
if self.export_meshes:
res_dict['skel_f'] = self.skel.skel_f.cpu().numpy().copy()
res_dict['skin_f'] = self.skel.skin_f.cpu().numpy().copy()
res_dict['smpl_f'] = self.smpl.faces
# Iterate over the batches to fit the whole sequence
for i in pbar:
if debug:
# Only run the first batch to test, ignore the rest
if i > 1:
continue
# Get batch start and end indices
i_start = i * batch_size
i_end = min((i+1) * batch_size, self.nb_frames)
# Fit the batch
betas, poses, trans, verts = self._fit_batch(body_params, i, i_start, i_end, enable_time=opt_sequence, fix_poses=fix_poses)
# if torch.isnan(betas).any() \
# or torch.isnan(poses).any() \
# or torch.isnan(trans).any():
# print(f'Nan values detected.')
# raise ValueError('Nan values detected in the output.')
# Store ethe results
res_dict['poses'].append(poses)
res_dict['betas'].append(betas)
res_dict['trans'].append(trans)
if self.export_meshes:
# Store the meshes vertices
skel_output = self.skel.forward(poses=poses, betas=betas, trans=trans, poses_type='skel', skelmesh=True)
res_dict['skel_v'].append(skel_output.skel_verts)
res_dict['skin_v'].append(skel_output.skin_verts)
res_dict['smpl_v'].append(verts)
if opt_sequence:
# Initialize the next frames with current frame
body_params['poses_skel'][i_end:] = poses[-1:].detach()
body_params['trans_skel'][i_end:] = trans[-1].detach()
body_params['betas_skel'][i_end:] = betas[-1:].detach()
# Concatenate the batches and convert to numpy
for key, val in res_dict.items():
if isinstance(val, list):
res_dict[key] = torch.cat(val, dim=0).detach().cpu().numpy()
return res_dict
def _init_params(self, betas_smpl, poses_smpl, trans_smpl, skel_data_init=None, variant_exp=''):
""" Return initial SKEL parameters from SMPL data dictionary and an optional SKEL data dictionary."""
if skel_data_init is None or self.force_recompute:
poses_skel = torch.zeros((self.nb_frames, self.skel.num_q_params), device=self.device)
if variant_exp == '' or variant_exp == '_official_old':
poses_skel[:, :3] = poses_smpl[:, :3] # Global orient are similar between SMPL and SKEL, so init with SMPL angles
elif variant_exp == '_official_fix':
# https://github.com/MarilynKeller/SKEL/commit/d1f6ff62235c142ba010158e00e21fd4fe25807f#diff-09188717a56a42e9589e9bd289f9ddb4fb53160e03c81a7ced70b3a84c1d9d0bR157
pass
elif variant_exp == '_my_fix':
gt_orient_aa = poses_smpl[:, :3]
# IMPORTANT: The alignment comes from `exp/inspect_skel/archive/orientation.py`.
from lib.utils.geometry.rotation import axis_angle_to_matrix, matrix_to_euler_angles
gt_orient_mat = axis_angle_to_matrix(gt_orient_aa)
gt_orient_ea = matrix_to_euler_angles(gt_orient_mat, 'YXZ')
flip = torch.tensor([-1, 1, 1], device=self.device)
poses_skel[:, :3] = gt_orient_ea[:, [2, 1, 0]] * flip
else:
raise ValueError(f'Unknown variant_exp {variant_exp}')
betas_skel = torch.zeros((self.nb_frames, 10), device=self.device)
betas_skel[:] = betas_smpl[..., :10]
trans_skel = trans_smpl # Translation is similar between SMPL and SKEL, so init with SMPL translation
else:
# Load from previous alignment
betas_skel = to_torch(skel_data_init['betas'], self.device)
poses_skel = to_torch(skel_data_init['poses'], self.device)
trans_skel = to_torch(skel_data_init['trans'], self.device)
# Make a dictionary out of the necessary body parameters
body_params = {
'betas_skel': betas_skel,
'poses_skel': poses_skel,
'trans_skel': trans_skel,
'betas_smpl': betas_smpl,
'poses_smpl': poses_smpl,
'trans_smpl': trans_smpl
}
return body_params
def _fit_batch(self, body_params, i, i_start, i_end, enable_time=False, fix_poses=False):
""" Create parameters for the batch and run the optimization."""
# Sample a batch ver
body_params = { key: val[i_start:i_end] for key, val in body_params.items()}
# SMPL params
betas_smpl = body_params['betas_smpl']
poses_smpl = body_params['poses_smpl']
trans_smpl = body_params['trans_smpl']
# SKEL params
betas = to_params(body_params['betas_skel'], device=self.device)
poses = to_params(body_params['poses_skel'], device=self.device)
trans = to_params(body_params['trans_skel'], device=self.device)
if 'verts' in body_params:
verts = body_params['verts']
else:
# Run a SMPL forward pass to get the SMPL body vertices
smpl_output = self.smpl(betas=betas_smpl, body_pose=poses_smpl[:,3:], transl=trans_smpl, global_orient=poses_smpl[:,:3])
verts = smpl_output.vertices
# Optimize
config = self.cfg.optim_steps
current_cfg = config[0]
# from lib.kits.debug import set_trace
# set_trace()
try:
if fix_poses:
# for ci, cfg in enumerate(config[1:]):
for ci, cfg in enumerate([config[-1]]): # To debug, only run the last step
current_cfg.update(cfg)
print(f'Step {ci+1}: {current_cfg.description}')
self._optim([trans,betas], poses, betas, trans, verts, current_cfg, enable_time)
else:
if not enable_time or not self.is_skel_data_init:
# Optimize the global rotation and translation for the initial fitting
print(f'Step 0: {current_cfg.description}')
self._optim([trans,poses], poses, betas, trans, verts, current_cfg, enable_time)
for ci, cfg in enumerate(config[1:]):
# for ci, cfg in enumerate([config[-1]]): # To debug, only run the last step
current_cfg.update(cfg)
print(f'Step {ci+1}: {current_cfg.description}')
self._optim([poses], poses, betas, trans, verts, current_cfg, enable_time)
# # Refine by optimizing the whole body
# cfg.update(self.cfg_optim[])
# cfg.update({'mode' : 'free', 'tolerance_change': 0.0001, 'l_joint': 0.2e4})
# self._optim([trans, poses], poses, betas, trans, verts, cfg)
except Exception as e:
print(e)
traceback.print_exc()
# from lib.kits.debug import set_trace
# set_trace()
return betas, poses, trans, verts
def _optim(self,
params,
poses,
betas,
trans,
verts,
cfg,
enable_time=False,
):
# regress anatomical joints from SMPL's vertices
anat_joints = torch.einsum('bik,ji->bjk', [verts, self.skel.J_regressor_osim])
dJ=torch.zeros((poses.shape[0], 24, 3), device=betas.device)
# Create the optimizer
optimizer = torch.optim.LBFGS(params,
lr=cfg.lr,
max_iter=cfg.max_iter,
line_search_fn=cfg.line_search_fn,
tolerance_change=cfg.tolerance_change)
poses_init = poses.detach().clone()
trans_init = trans.detach().clone()
def closure():
optimizer.zero_grad()
# fi = self.watch_frame #frame of the batch to display
# output = self.skel.forward(poses=poses[fi:fi+1],
# betas=betas[fi:fi+1],
# trans=trans[fi:fi+1],
# poses_type='skel',
# dJ=dJ[fi:fi+1],
# skelmesh=True)
# self._fstep_plot(output, cfg, verts[fi:fi+1], anat_joints[fi:fi+1], )
loss_dict = self._fitting_loss(poses,
poses_init,
betas,
trans,
trans_init,
dJ,
anat_joints,
verts,
cfg,
enable_time)
# print(pretty_loss_print(loss_dict))
loss = sum(loss_dict.values())
loss.backward()
return loss
for step_i in range(cfg.num_steps):
loss = optimizer.step(closure).item()
def _get_masks(self, cfg):
pose_mask = torch.ones((self.skel.num_q_params)).to(self.device).unsqueeze(0)
verts_mask = torch.ones_like(self.fitting_mask)
joint_mask = torch.ones((self.skel.num_joints, 3)).to(self.device).unsqueeze(0).bool()
# Mask vertices
if cfg.mode=='root_only':
# Only optimize the global rotation of the body, i.e. the first 3 angles of the pose
pose_mask[:] = 0 # Only optimize for the global rotation
pose_mask[:,:3] = 1
# Only fit the thorax vertices to recover the proper body orientation and translation
verts_mask = self.torso_verts_mask
elif cfg.mode=='fixed_upper_limbs':
upper_limbs_joints = [0,1,2,3,6,9,12,15,17]
verts_mask = (self.smpl.lbs_weights[:,upper_limbs_joints]>0.5).sum(dim=-1)>0
verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1)
joint_mask[:, [3,4,5,8,9,10,18,23], :] = 0 # Do not try to match the joints of the upper limbs
pose_mask[:] = 1
pose_mask[:,:3] = 0 # Block the global rotation
pose_mask[:,19] = 0 # block the lumbar twist
# pose_mask[:, 36:39] = 0
# pose_mask[:, 43:46] = 0
# pose_mask[:, 62:65] = 0
# pose_mask[:, 62:65] = 0
elif cfg.mode=='fixed_root':
pose_mask[:] = 1
pose_mask[:,:3] = 0 # Block the global rotation
# pose_mask[:,19] = 0 # block the lumbar twist
# The orientation of the upper limbs is often wrong in SMPL so ignore these vertices for the finale step
upper_limbs_joints = [1,2,16,17]
verts_mask = (self.smpl.lbs_weights[:,upper_limbs_joints]>0.5).sum(dim=-1)>0
verts_mask = torch.logical_not(verts_mask)
verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1)
elif cfg.mode=='free':
verts_mask = torch.ones_like(self.fitting_mask )
joint_mask[:]=0
joint_mask[:, [19,14], :] = 1 # Only fir the scapula join to avoid collapsing shoulders
else:
raise ValueError(f'Unknown mode {cfg.mode}')
return pose_mask, verts_mask, joint_mask
def _fitting_loss(self,
poses,
poses_init,
betas,
trans,
trans_init,
dJ,
anat_joints,
verts,
cfg,
enable_time=False):
loss_dict = {}
pose_mask, verts_mask, joint_mask = self._get_masks(cfg)
poses = poses * pose_mask + poses_init * (1-pose_mask)
# Mask joints to not optimize before computing the losses
output = self.skel.forward(poses=poses, betas=betas, trans=trans, poses_type='skel', dJ=dJ, skelmesh=False)
# Fit the SMPL vertices
# We know the skinning of the forearm and the neck are not perfect,
# so we create a mask of the SMPL vertices that are important to fit, like the hands and the head
loss_dict['verts_loss_loose'] = cfg.l_verts_loose * (verts_mask * (output.skin_verts - verts)**2).sum() / (((verts_mask).sum()*self.nb_frames))
# Fit the regressed joints, this avoids collapsing shoulders
# loss_dict['joint_loss'] = cfg.l_joint * F.mse_loss(output.joints, anat_joints)
loss_dict['joint_loss'] = cfg.l_joint * (joint_mask * (output.joints - anat_joints)**2).mean()
# Time consistancy
if poses.shape[0] > 1 and enable_time:
# This avoids unstable hips orientationZ
loss_dict['time_loss'] = cfg.l_time_loss * F.mse_loss(poses[1:], poses[:-1])
loss_dict['pose_loss'] = cfg.l_pose_loss * compute_pose_loss(poses, poses_init)
if cfg.use_basic_loss is False:
# These losses can be used to regularize the optimization but are not always necessary
loss_dict['anch_rot'] = cfg.l_anch_pose * compute_anchor_pose(poses, poses_init)
loss_dict['anch_trans'] = cfg.l_anch_trans * compute_anchor_trans(trans, trans_init)
loss_dict['verts_loss'] = cfg.l_verts * (verts_mask * self.fitting_mask * (output.skin_verts - verts)**2).sum() / (self.fitting_mask*verts_mask).sum()
# Regularize the pose
loss_dict['scapula_loss'] = cfg.l_scapula_loss * compute_scapula_loss(poses)
loss_dict['spine_loss'] = cfg.l_spine_loss * compute_spine_loss(poses)
# Adjust the losses of all the pose regularizations sub losses with the pose_reg_factor value
for key in ['scapula_loss', 'spine_loss', 'pose_loss']:
loss_dict[key] = cfg.pose_reg_factor * loss_dict[key]
return loss_dict
def _fstep_plot(self, output, cfg, verts, anat_joints):
"Function to plot each step"
if('DISABLE_VIEWER' in os.environ):
return
pose_mask, verts_mask, joint_mask = self._get_masks(cfg)
skin_err_value = ((output.skin_verts[0] - verts[0])**2).sum(dim=-1).sqrt()
skin_err_value = skin_err_value / 0.05
skin_err_value = to_numpy(skin_err_value)
skin_mesh = Mesh(v=to_numpy(output.skin_verts[0]), f=[], vc='white')
skel_mesh = Mesh(v=to_numpy(output.skel_verts[0]), f=self.skel.skel_f.cpu().numpy(), vc='white')
# Display vertex distance on SMPL
smpl_verts = to_numpy(verts[0])
smpl_mesh = Mesh(v=smpl_verts, f=self.smpl.faces)
smpl_mesh.set_vertex_colors_from_weights(skin_err_value, scale_to_range_1=False)
smpl_mesh_masked = Mesh(v=smpl_verts[to_numpy(verts_mask[0,:,0])], f=[], vc='green')
smpl_mesh_pc = Mesh(v=smpl_verts, f=[], vc='green')
skin_mesh_err = Mesh(v=to_numpy(output.skin_verts[0]), f=self.skel.skin_f.cpu().numpy(), vc='white')
skin_mesh_err.set_vertex_colors_from_weights(skin_err_value, scale_to_range_1=False)
# List the meshes to display
meshes_left = [skin_mesh_err, smpl_mesh_pc]
meshes_right = [smpl_mesh_masked, skin_mesh, skel_mesh]
if cfg.l_joint > 0:
# Plot the joints
meshes_right += location_to_spheres(to_numpy(output.joints[joint_mask[:,:,0]]), color=(1,0,0), radius=0.02)
meshes_right += location_to_spheres(to_numpy(anat_joints[joint_mask[:,:,0]]), color=(0,1,0), radius=0.02) \
self.mv[0][0].set_dynamic_meshes(meshes_left)
self.mv[0][1].set_dynamic_meshes(meshes_right)
# print(poses[frame_to_watch, :3])
# print(trans[frame_to_watch])
# print(betas[frame_to_watch, :3])
# mv.get_keypress()
|