File size: 20,327 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

"""
Copyright©2023 Max-Planck-Gesellschaft zur Förderung
der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
for Intelligent Systems. All rights reserved.

Author: Soyong Shin, Marilyn Keller
See https://skel.is.tue.mpg.de/license.html for licensing and contact information.
"""

import traceback
import math
import os
import pickle
import torch
import smplx
import omegaconf
import torch.nn.functional as F
from psbody.mesh import Mesh, MeshViewer, MeshViewers
from tqdm import trange
from pathlib import Path

import lib.body_models.skel.config as cg
from lib.body_models.skel.skel_model import SKEL
from .losses import compute_anchor_pose, compute_anchor_trans, compute_pose_loss, compute_scapula_loss, compute_spine_loss, compute_time_loss, pretty_loss_print
from .utils import location_to_spheres, to_numpy, to_params, to_torch
from .align_config import config
from .align_config_joint import config as config_joint

class SkelFitter(object):

    def __init__(self, gender, device, num_betas=10, export_meshes=False, joint_optim=False) -> None:

        self.smpl = smplx.create(cg.smpl_folder, model_type='smpl', gender=gender, num_betas=num_betas, batch_size=1, export_meshes=False).to(device)
        self.skel = SKEL(gender).to(device)
        self.gender = gender
        self.device = device
        self.num_betas = num_betas
        # Instanciate masks used for the vertex to vertex fitting
        fitting_mask_file = Path(__file__).parent / 'riggid_parts_mask.pkl'
        fitting_indices = pickle.load(open(fitting_mask_file, 'rb'))
        fitting_mask = torch.zeros(6890, dtype=torch.bool, device=self.device)
        fitting_mask[fitting_indices] = 1
        self.fitting_mask = fitting_mask.reshape(1, -1, 1).to(self.device) # 1xVx1 to be applied to verts that are BxVx3

        smpl_torso_joints = [0,3]
        verts_mask = (self.smpl.lbs_weights[:,smpl_torso_joints]>0.5).sum(dim=-1)>0
        self.torso_verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1) # Because verts are of shape BxVx3

        self.export_meshes = export_meshes


        # make the cfg being an object using omegaconf
        if joint_optim:
            self.cfg = omegaconf.OmegaConf.create(config_joint)
        else:
            self.cfg = omegaconf.OmegaConf.create(config)

        # Instanciate the mesh viewer to visualize the fitting
        if('DISABLE_VIEWER' in os.environ):
            self.mv = None
            print("\n DISABLE_VIEWER flag is set, running in headless mode")
        else:
            self.mv = MeshViewers((1,2),  keepalive=self.cfg.keepalive_meshviewer)


    def run_fit(self,
            trans_in,
            betas_in,
            poses_in,
            batch_size=20,
            skel_data_init=None,
            force_recompute=False,
            debug=False,
            watch_frame=0,
            freevert_mesh=None,
            opt_sequence=False,
            fix_poses=False,
            variant_exp=''):
        """Align SKEL to a SMPL sequence."""

        self.nb_frames = poses_in.shape[0]
        self.watch_frame = watch_frame
        self.is_skel_data_init = skel_data_init is not None
        self.force_recompute = force_recompute

        print('Fitting {} frames'.format(self.nb_frames))
        print('Watching frame: {}'.format(watch_frame))

        # Initialize SKEL torch params
        body_params = self._init_params(betas_in, poses_in, trans_in, skel_data_init, variant_exp)

        # We cut the whole sequence in batches for parallel optimization
        if batch_size > self.nb_frames:
            batch_size = self.nb_frames
            print('Batch size is larger than the number of frames. Setting batch size to {}'.format(batch_size))

        n_batch = math.ceil(self.nb_frames/batch_size)
        pbar = trange(n_batch, desc='Running batch optimization')

        # Initialize the res dict to store the per frame result skel parameters
        out_keys = ['poses', 'betas', 'trans']
        if self.export_meshes:
            out_keys += ['skel_v', 'skin_v', 'smpl_v']
        res_dict = {key: [] for key in out_keys}

        res_dict['gender'] = self.gender
        if self.export_meshes:
            res_dict['skel_f'] = self.skel.skel_f.cpu().numpy().copy()
            res_dict['skin_f'] = self.skel.skin_f.cpu().numpy().copy()
            res_dict['smpl_f'] = self.smpl.faces

        # Iterate over the batches to fit the whole sequence
        for i in pbar:

            if debug:
                # Only run the first batch to test, ignore the rest
                if i > 1:
                    continue

            # Get batch start and end indices
            i_start = i * batch_size
            i_end = min((i+1) * batch_size, self.nb_frames)

            # Fit the batch
            betas, poses, trans, verts = self._fit_batch(body_params, i, i_start, i_end, enable_time=opt_sequence, fix_poses=fix_poses)
            # if torch.isnan(betas).any() \
            # or torch.isnan(poses).any() \
            # or torch.isnan(trans).any():
            #     print(f'Nan values detected.')
            #     raise ValueError('Nan values detected in the output.')

            # Store ethe results
            res_dict['poses'].append(poses)
            res_dict['betas'].append(betas)
            res_dict['trans'].append(trans)
            if self.export_meshes:
                # Store the meshes vertices
                skel_output = self.skel.forward(poses=poses, betas=betas, trans=trans, poses_type='skel', skelmesh=True)
                res_dict['skel_v'].append(skel_output.skel_verts)
                res_dict['skin_v'].append(skel_output.skin_verts)
                res_dict['smpl_v'].append(verts)

            if opt_sequence:
                # Initialize the next frames with current frame
                body_params['poses_skel'][i_end:] = poses[-1:].detach()
                body_params['trans_skel'][i_end:] = trans[-1].detach()
                body_params['betas_skel'][i_end:] = betas[-1:].detach()

        # Concatenate the batches and convert to numpy
        for key, val in res_dict.items():
            if isinstance(val, list):
                res_dict[key] = torch.cat(val, dim=0).detach().cpu().numpy()

        return res_dict

    def _init_params(self, betas_smpl, poses_smpl, trans_smpl, skel_data_init=None, variant_exp=''):
        """ Return initial SKEL parameters from SMPL data dictionary and an optional SKEL data dictionary."""

        if skel_data_init is None or self.force_recompute:

            poses_skel = torch.zeros((self.nb_frames, self.skel.num_q_params), device=self.device)
            if variant_exp == '' or variant_exp == '_official_old':
                poses_skel[:, :3] = poses_smpl[:, :3] # Global orient are similar between SMPL and SKEL, so init with SMPL angles
            elif variant_exp == '_official_fix':
                # https://github.com/MarilynKeller/SKEL/commit/d1f6ff62235c142ba010158e00e21fd4fe25807f#diff-09188717a56a42e9589e9bd289f9ddb4fb53160e03c81a7ced70b3a84c1d9d0bR157
                pass
            elif variant_exp == '_my_fix':
                gt_orient_aa = poses_smpl[:, :3]
                # IMPORTANT: The alignment comes from `exp/inspect_skel/archive/orientation.py`.
                from lib.utils.geometry.rotation import axis_angle_to_matrix, matrix_to_euler_angles
                gt_orient_mat = axis_angle_to_matrix(gt_orient_aa)
                gt_orient_ea = matrix_to_euler_angles(gt_orient_mat, 'YXZ')
                flip = torch.tensor([-1, 1, 1], device=self.device)
                poses_skel[:, :3] = gt_orient_ea[:, [2, 1, 0]] * flip
            else:
                raise ValueError(f'Unknown variant_exp {variant_exp}')

            betas_skel = torch.zeros((self.nb_frames, 10), device=self.device)
            betas_skel[:] = betas_smpl[..., :10]

            trans_skel = trans_smpl # Translation is similar between SMPL and SKEL, so init with SMPL translation

        else:
            # Load from previous alignment
            betas_skel = to_torch(skel_data_init['betas'], self.device)
            poses_skel = to_torch(skel_data_init['poses'], self.device)
            trans_skel = to_torch(skel_data_init['trans'], self.device)

        # Make a dictionary out of the necessary body parameters
        body_params = {
            'betas_skel': betas_skel,
            'poses_skel': poses_skel,
            'trans_skel': trans_skel,
            'betas_smpl': betas_smpl,
            'poses_smpl': poses_smpl,
            'trans_smpl': trans_smpl
        }

        return body_params


    def _fit_batch(self, body_params, i, i_start, i_end, enable_time=False, fix_poses=False):
        """ Create parameters for the batch and run the optimization."""

        # Sample a batch ver
        body_params = { key: val[i_start:i_end] for key, val in body_params.items()}

        # SMPL params
        betas_smpl = body_params['betas_smpl']
        poses_smpl = body_params['poses_smpl']
        trans_smpl = body_params['trans_smpl']

        # SKEL params
        betas = to_params(body_params['betas_skel'], device=self.device)
        poses = to_params(body_params['poses_skel'], device=self.device)
        trans = to_params(body_params['trans_skel'], device=self.device)

        if 'verts' in body_params:
            verts = body_params['verts']
        else:
            # Run a SMPL forward pass to get the SMPL body vertices
            smpl_output = self.smpl(betas=betas_smpl, body_pose=poses_smpl[:,3:], transl=trans_smpl, global_orient=poses_smpl[:,:3])
            verts = smpl_output.vertices

        # Optimize
        config = self.cfg.optim_steps
        current_cfg = config[0]

        # from lib.kits.debug import set_trace
        # set_trace()

        try:
            if fix_poses:
                # for ci, cfg in enumerate(config[1:]):
                for ci, cfg in enumerate([config[-1]]): # To debug, only run the last step
                    current_cfg.update(cfg)
                    print(f'Step {ci+1}: {current_cfg.description}')
                    self._optim([trans,betas], poses, betas, trans, verts, current_cfg, enable_time)
            else:
                if not enable_time or not self.is_skel_data_init:
                    # Optimize the global rotation and translation for the initial fitting
                    print(f'Step 0: {current_cfg.description}')
                    self._optim([trans,poses], poses, betas, trans, verts, current_cfg, enable_time)

                for ci, cfg in enumerate(config[1:]):
                # for ci, cfg in enumerate([config[-1]]): # To debug, only run the last step
                    current_cfg.update(cfg)
                    print(f'Step {ci+1}: {current_cfg.description}')
                    self._optim([poses], poses, betas, trans, verts, current_cfg, enable_time)


                # # Refine by optimizing the whole body
                # cfg.update(self.cfg_optim[])
                # cfg.update({'mode' : 'free', 'tolerance_change': 0.0001, 'l_joint': 0.2e4})
                # self._optim([trans, poses], poses, betas, trans, verts, cfg)
        except Exception as e:
            print(e)
            traceback.print_exc()
            # from lib.kits.debug import set_trace
            # set_trace()

        return betas, poses, trans, verts

    def _optim(self,
            params,
            poses,
            betas,
            trans,
            verts,
            cfg,
            enable_time=False,
            ):

            # regress anatomical joints from SMPL's vertices
            anat_joints = torch.einsum('bik,ji->bjk', [verts, self.skel.J_regressor_osim])
            dJ=torch.zeros((poses.shape[0], 24, 3), device=betas.device)

            # Create the optimizer
            optimizer = torch.optim.LBFGS(params,
                                          lr=cfg.lr,
                                          max_iter=cfg.max_iter,
                                          line_search_fn=cfg.line_search_fn,
                                          tolerance_change=cfg.tolerance_change)

            poses_init = poses.detach().clone()
            trans_init = trans.detach().clone()

            def closure():
                optimizer.zero_grad()

                # fi = self.watch_frame #frame of the batch to display
                # output = self.skel.forward(poses=poses[fi:fi+1],
                #                             betas=betas[fi:fi+1],
                #                             trans=trans[fi:fi+1],
                #                             poses_type='skel',
                #                             dJ=dJ[fi:fi+1],
                #                             skelmesh=True)

                # self._fstep_plot(output, cfg, verts[fi:fi+1], anat_joints[fi:fi+1], )

                loss_dict = self._fitting_loss(poses,
                                        poses_init,
                                        betas,
                                        trans,
                                        trans_init,
                                        dJ,
                                        anat_joints,
                                        verts,
                                        cfg,
                                        enable_time)

                # print(pretty_loss_print(loss_dict))

                loss = sum(loss_dict.values())
                loss.backward()

                return loss

            for step_i in range(cfg.num_steps):
                loss = optimizer.step(closure).item()

    def _get_masks(self, cfg):
        pose_mask = torch.ones((self.skel.num_q_params)).to(self.device).unsqueeze(0)
        verts_mask = torch.ones_like(self.fitting_mask)
        joint_mask = torch.ones((self.skel.num_joints, 3)).to(self.device).unsqueeze(0).bool()

        # Mask vertices
        if cfg.mode=='root_only':
            # Only optimize the global rotation of the body, i.e. the first 3 angles of the pose
            pose_mask[:] = 0 # Only optimize for the global rotation
            pose_mask[:,:3] = 1
            # Only fit the thorax vertices to recover the proper body orientation and translation
            verts_mask = self.torso_verts_mask

        elif cfg.mode=='fixed_upper_limbs':
            upper_limbs_joints = [0,1,2,3,6,9,12,15,17]
            verts_mask = (self.smpl.lbs_weights[:,upper_limbs_joints]>0.5).sum(dim=-1)>0
            verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1)

            joint_mask[:, [3,4,5,8,9,10,18,23], :] = 0 # Do not try to match the joints of the upper limbs

            pose_mask[:] = 1
            pose_mask[:,:3] = 0    # Block the global rotation
            pose_mask[:,19] = 0  # block the lumbar twist
            # pose_mask[:, 36:39] = 0
            # pose_mask[:, 43:46] = 0
            # pose_mask[:, 62:65] = 0
            # pose_mask[:, 62:65] = 0

        elif cfg.mode=='fixed_root':
            pose_mask[:] = 1
            pose_mask[:,:3] = 0  # Block the global rotation
            # pose_mask[:,19] = 0  # block the lumbar twist

            # The orientation of the upper limbs is often wrong in SMPL so ignore these vertices for the finale step
            upper_limbs_joints = [1,2,16,17]
            verts_mask = (self.smpl.lbs_weights[:,upper_limbs_joints]>0.5).sum(dim=-1)>0
            verts_mask = torch.logical_not(verts_mask)
            verts_mask = verts_mask.unsqueeze(0).unsqueeze(-1)

        elif cfg.mode=='free':
            verts_mask = torch.ones_like(self.fitting_mask )

            joint_mask[:]=0
            joint_mask[:, [19,14], :] = 1 # Only fir the scapula join to avoid collapsing shoulders

        else:
            raise ValueError(f'Unknown mode {cfg.mode}')

        return pose_mask, verts_mask, joint_mask

    def _fitting_loss(self,
                    poses,
                    poses_init,
                    betas,
                    trans,
                    trans_init,
                    dJ,
                    anat_joints,
                    verts,
                    cfg,
                    enable_time=False):

        loss_dict = {}


        pose_mask, verts_mask, joint_mask = self._get_masks(cfg)
        poses = poses * pose_mask + poses_init * (1-pose_mask)

        # Mask joints to not optimize before computing the losses

        output = self.skel.forward(poses=poses, betas=betas, trans=trans, poses_type='skel', dJ=dJ, skelmesh=False)

        # Fit the SMPL vertices
        # We know the skinning of the forearm and the neck are not perfect,
        # so we create a mask of the SMPL vertices that are important to fit, like the hands and the head
        loss_dict['verts_loss_loose'] = cfg.l_verts_loose * (verts_mask  * (output.skin_verts - verts)**2).sum() / (((verts_mask).sum()*self.nb_frames))

        # Fit the regressed joints, this avoids collapsing shoulders
        # loss_dict['joint_loss'] = cfg.l_joint * F.mse_loss(output.joints, anat_joints)
        loss_dict['joint_loss'] = cfg.l_joint * (joint_mask * (output.joints - anat_joints)**2).mean()

        # Time consistancy
        if poses.shape[0] > 1 and enable_time:
            # This avoids unstable hips orientationZ
            loss_dict['time_loss'] = cfg.l_time_loss * F.mse_loss(poses[1:], poses[:-1])

        loss_dict['pose_loss'] = cfg.l_pose_loss * compute_pose_loss(poses, poses_init)

        if cfg.use_basic_loss is False:
            # These losses can be used to regularize the optimization but are not always necessary
            loss_dict['anch_rot'] = cfg.l_anch_pose * compute_anchor_pose(poses, poses_init)
            loss_dict['anch_trans'] = cfg.l_anch_trans * compute_anchor_trans(trans, trans_init)

            loss_dict['verts_loss'] = cfg.l_verts * (verts_mask * self.fitting_mask * (output.skin_verts - verts)**2).sum() / (self.fitting_mask*verts_mask).sum()

            # Regularize the pose
            loss_dict['scapula_loss'] = cfg.l_scapula_loss * compute_scapula_loss(poses)
            loss_dict['spine_loss'] = cfg.l_spine_loss * compute_spine_loss(poses)

            # Adjust the losses of all the pose regularizations sub losses with the pose_reg_factor value
            for key in ['scapula_loss', 'spine_loss', 'pose_loss']:
                loss_dict[key] = cfg.pose_reg_factor * loss_dict[key]

        return loss_dict

    def _fstep_plot(self, output, cfg, verts, anat_joints):
        "Function to plot each step"

        if('DISABLE_VIEWER' in os.environ):
            return

        pose_mask, verts_mask, joint_mask = self._get_masks(cfg)

        skin_err_value = ((output.skin_verts[0] - verts[0])**2).sum(dim=-1).sqrt()
        skin_err_value = skin_err_value / 0.05
        skin_err_value = to_numpy(skin_err_value)

        skin_mesh = Mesh(v=to_numpy(output.skin_verts[0]), f=[], vc='white')
        skel_mesh = Mesh(v=to_numpy(output.skel_verts[0]), f=self.skel.skel_f.cpu().numpy(), vc='white')

        # Display vertex distance on SMPL
        smpl_verts = to_numpy(verts[0])
        smpl_mesh = Mesh(v=smpl_verts, f=self.smpl.faces)
        smpl_mesh.set_vertex_colors_from_weights(skin_err_value, scale_to_range_1=False)

        smpl_mesh_masked = Mesh(v=smpl_verts[to_numpy(verts_mask[0,:,0])], f=[], vc='green')
        smpl_mesh_pc = Mesh(v=smpl_verts, f=[], vc='green')

        skin_mesh_err = Mesh(v=to_numpy(output.skin_verts[0]), f=self.skel.skin_f.cpu().numpy(), vc='white')
        skin_mesh_err.set_vertex_colors_from_weights(skin_err_value, scale_to_range_1=False)
        # List the meshes to display
        meshes_left = [skin_mesh_err, smpl_mesh_pc]
        meshes_right = [smpl_mesh_masked, skin_mesh, skel_mesh]

        if cfg.l_joint > 0:
            # Plot the joints
            meshes_right += location_to_spheres(to_numpy(output.joints[joint_mask[:,:,0]]), color=(1,0,0), radius=0.02)
            meshes_right += location_to_spheres(to_numpy(anat_joints[joint_mask[:,:,0]]), color=(0,1,0), radius=0.02) \


        self.mv[0][0].set_dynamic_meshes(meshes_left)
        self.mv[0][1].set_dynamic_meshes(meshes_right)

        # print(poses[frame_to_watch, :3])
        # print(trans[frame_to_watch])
        # print(betas[frame_to_watch, :3])
        # mv.get_keypress()