Spaces:
Sleeping
Sleeping
File size: 1,169 Bytes
814b8e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import os
from datasets import load_dataset
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
from trl import SFTTrainer
# Load the model and tokenizer
model_name = "microsoft/phi-4-multimodal-instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the dataset
dataset = load_dataset("openai/gsm8k", "main")["train"]
# Preprocess the dataset
def preprocess_function(examples):
return tokenizer(examples["question"], padding="max_length", truncation=True)
dataset = dataset.map(preprocess_function, batched=True)
# Define the training arguments
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-5,
num_train_epochs=1,
fp16=True,
logging_dir="./logs",
report_to="none",
)
# Create the SFT trainer
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
args=training_args,
tokenizer=tokenizer,
)
# Train the model
trainer.train()
# Save the model
trainer.save_model("./results") |