Benjamin Consolvo commited on
Commit
aa25bb2
Β·
1 Parent(s): 78797ac

remove readme backup

Browse files
Files changed (1) hide show
  1. README_backup.md +0 -166
README_backup.md DELETED
@@ -1,166 +0,0 @@
1
- ---
2
- title: VacAIgent
3
- emoji: 🐨
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.44.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- short_description: Let AI agents plan your next vacation!
12
- ---
13
-
14
- # πŸ–οΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
15
-
16
- _Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
17
-
18
- ![Beach Vacation Scene ~ generated by GPT-4V](images/beach.png)
19
-
20
- ## Introduction
21
-
22
- VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently, now with an added layer of interactivity and accessibility through Streamlit.
23
-
24
- **Check out the video below for code walkthrough** πŸ‘‡
25
-
26
- <a href="https://youtu.be/nKG_kbQUDDE">
27
- <img src="https://img.youtube.com/vi/nKG_kbQUDDE/hqdefault.jpg" alt="Watch the video" width="100%">
28
- </a>
29
-
30
- (_Trip example originally developed by [@joaomdmoura](https://x.com/joaomdmoura)_)
31
-
32
- ## CrewAI Framework
33
-
34
- CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a streamlined Streamlit user interface.
35
-
36
- ## Streamlit Interface
37
-
38
- The introduction of [Streamlit](https://streamlit.io/) transforms this application into an interactive web app, allowing users to easily input their preferences and receive tailored travel plans.
39
-
40
- ## Running the Application
41
-
42
- To experience the VacAIgent app:
43
-
44
- ### Pre-Requisites
45
- 1. Install and Configure **git** on your machine
46
- 2. Get the API key from **scrapinagent.com** from scrapinagent [Click Here to Signup](https://scrapingant.com/)
47
- 3. Get the API from **SERPER API** from serper [Click here to Signup]( https://serper.dev/)
48
-
49
- ### Deploy Trip Planner
50
-
51
- #### Step 1
52
- ```sh
53
- git clone https://github.com/intel-sandbox/trip_planner_agent
54
- ```
55
- * *Please make sure git is installed*
56
-
57
- #### Step 2
58
-
59
- Insall Dependencies
60
- ```sh
61
- pip install -r requirements.txt
62
- ```
63
- #### Step 3
64
-
65
- ```sh
66
- cd trip_planner_agent
67
- ```
68
-
69
- create `.streamlit/secrets.toml` file and Update **Credentials**
70
- you can use secrtes.example file for reference
71
-
72
- ```sh
73
- SERPER_API_KEY=""
74
- SCRAPINGANT_API_KEY=""
75
- OPENAI_API_KEY=""
76
- MODEL_ID=""
77
- MODEL_BASE_URL=""
78
- ```
79
- #### Step 4
80
-
81
- Run the application
82
-
83
- ```sh
84
- streamlit run streamlit_app.py
85
- ```
86
-
87
- Your application should be up and running
88
-
89
- β˜… **Disclaimer**: The application uses GPT-4 by default. Ensure you have access to OpenAI's API and be aware of the associated costs.
90
-
91
- ## Details & Explanation
92
-
93
- - **Streamlit UI**: The Streamlit interface is implemented in `streamlit_app.py`, where users can input their trip details.
94
- - **Components**:
95
- - `./trip_tasks.py`: Contains task prompts for the agents.
96
- - `./trip_agents.py`: Manages the creation of agents.
97
- - `./tools directory`: Houses tool classes used by agents.
98
- - `./streamlit_app.py`: The heart of the Streamlit app.
99
-
100
- ## Using GPT 3.5
101
-
102
- To switch from GPT-4 to GPT-3.5, pass the llm argument in the agent constructor:
103
-
104
- ```python
105
- from langchain.chat_models import ChatOpenAI
106
-
107
- llm = ChatOpenAI(model='gpt-3.5-turbo') # Loading gpt-3.5-turbo (see more OpenAI models at https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4)
108
-
109
- class TripAgents:
110
- # ... existing methods
111
-
112
- def local_expert(self):
113
- return Agent(
114
- role='Local Expert',
115
- goal='Provide insights about the selected city',
116
- tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
117
- llm=llm,
118
- verbose=True
119
- )
120
-
121
- ```
122
-
123
- ## Using Local Models with Ollama
124
-
125
- For enhanced privacy and customization, you can integrate local models like Ollama:
126
-
127
- ### Setting Up Ollama
128
-
129
- - **Installation**: Follow Ollama's guide for installation.
130
- - **Configuration**: Customize the model as per your requirements.
131
-
132
- ### Integrating Ollama with CrewAI
133
-
134
- Pass the Ollama model to agents in the CrewAI framework:
135
-
136
- ```python
137
- from langchain.llms import Ollama
138
-
139
- ollama_model = Ollama(model="agent")
140
-
141
- class TripAgents:
142
- # ... existing methods
143
-
144
- def local_expert(self):
145
- return Agent(
146
- role='Local Expert',
147
- tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
148
- llm=ollama_model,
149
- verbose=True
150
- )
151
-
152
- ```
153
-
154
- ## Benefits of Local Models
155
-
156
- - **Privacy**: Process sensitive data in-house.
157
- - **Customization**: Tailor models to fit specific needs.
158
- - **Performance**: Potentially faster responses with on-premises models.
159
-
160
- ## License
161
-
162
- VacAIgent is open-sourced under the MIT License.
163
-
164
-
165
-
166
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference