import streamlit as st import yfinance as yf import alpaca_trade_api as alpaca from newsapi import NewsApiClient from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from datetime import datetime, timedelta import streamlit as st import pandas as pd import matplotlib.pyplot as plt import logging import threading import time import json import os import plotly.graph_objs as go from sklearn.preprocessing import minmax_scale from plotly.subplots import make_subplots # Configure logging with timestamps logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S" ) logger = logging.getLogger(__name__) # Use session state keys instead of file paths AUTO_TRADE_LOG_KEY = "auto_trade_log" # Session state key for trade log AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours) st.set_page_config(layout="wide") class AlpacaTrader: def __init__(self, API_KEY, API_SECRET, BASE_URL): self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL) self.cash = 0 self.holdings = {} self.trades = [] def get_market_status(self): return self.alpaca.get_clock().is_open def buy(self, symbol, qty, reason=None): try: # Ensure at least $1000 in cash before buying account = self.alpaca.get_account() cash_balance = float(account.cash) if cash_balance < 1000: logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.") return None order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day') if reason: logger.info(f"Bought {qty} shares of {symbol} [Reason: {reason}]") else: logger.info(f"Bought {qty} shares of {symbol}") # Record the trade if order: self.trades.append({ 'symbol': symbol, 'qty': qty, 'action': 'Buy', 'time': datetime.now(), 'reason': reason }) return order except Exception as e: logger.error(f"Error buying {symbol}: {e}") return None def sell(self, symbol, qty, reason=None): # Check if position exists and has enough quantity before attempting to sell positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()} if symbol not in positions: logger.warning(f"No position in {symbol}. Sell not attempted.") return None if positions[symbol] < qty: logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.") return None try: order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day') if reason: logger.info(f"Sold {qty} shares of {symbol} [Reason: {reason}]") else: logger.info(f"Sold {qty} shares of {symbol}") # Record the trade if order: self.trades.append({ 'symbol': symbol, 'qty': qty, 'action': 'Sell', 'time': datetime.now(), 'reason': reason }) return order except Exception as e: logger.error(f"Error selling {symbol}: {e}") return None def getHoldings(self): positions = self.alpaca.list_positions() for position in positions: self.holdings[position.symbol] = float(position.market_value) # Return holdings as a dictionary for internal use return self.holdings def getCash(self): return self.alpaca.get_account().cash def update_portfolio(self, symbol, price, qty, action): if action == 'buy': self.cash -= price * qty if symbol in self.holdings: self.holdings[symbol] += price * qty else: self.holdings[symbol] = price * qty elif action == 'sell': self.cash += price * qty self.holdings[symbol] -= price * qty if self.holdings[symbol] <= 0: del self.holdings[symbol] self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()}) class NewsSentiment: def __init__(self, API_KEY): ''' Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. ''' self.newsapi = NewsApiClient(api_key=API_KEY) self.sia = SentimentIntensityAnalyzer() def get_news_sentiment(self, symbols): ''' The News API has a rate limit of 100 requests per day for free accounts. If you exceed this limit, you'll get a rateLimited error. Example error message: ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'} ''' sentiment = {} for symbol in symbols: try: articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', # <-- fixed argument name page=1) compound_score = 0 for article in articles['articles'][:5]: # Check first 5 articles # print(f'article= {article}') score = self.sia.polarity_scores(article['title'])['compound'] compound_score += score avg_score = compound_score / 5 if articles['articles'] else 0 if avg_score > 0.1: sentiment[symbol] = 'Positive' elif avg_score < -0.1: sentiment[symbol] = 'Negative' else: sentiment[symbol] = 'Neutral' except Exception as e: logger.error(f"Error getting news for {symbol}: {e}") sentiment[symbol] = 'Neutral' return sentiment class StockAnalyzer: def __init__(self, alpaca): self.alpaca = alpaca self.symbols = self.get_top_volume_stocks() # Build a symbol->name mapping for use in plots/tables self.symbol_to_name = self.get_symbol_to_name() def get_symbol_to_name(self): # Get mapping from symbol to company name using Alpaca asset info assets = self.alpaca.alpaca.list_assets(status='active') return {asset.symbol: asset.name for asset in assets} def get_bars(self, alp_api, symbols, timeframe='1D'): bars_data = {} try: bars = alp_api.get_bars(list(symbols), timeframe).df if 'symbol' not in bars.columns: logger.warning("The 'symbol' column is missing in the bars DataFrame.") return {symbol: {'bar_data': None} for symbol in symbols} for symbol in symbols: symbol_bars = bars[bars['symbol'] == symbol] if not symbol_bars.empty: bar_info = symbol_bars.iloc[-1] # Handle index type for timestamp if isinstance(bar_info.name, tuple): timestamp = bar_info.name[1].isoformat() else: timestamp = bar_info.name.isoformat() bars_data[symbol] = { 'bar_data': { 'volume': bar_info['volume'], 'open': bar_info['open'], 'high': bar_info['high'], 'low': bar_info['low'], 'close': bar_info['close'], 'timestamp': timestamp } } else: logger.debug(f"No bar data for symbol: {symbol}") bars_data[symbol] = {'bar_data': None} except Exception as e: logger.warning(f"Error fetching bars in batch: {e}") for symbol in symbols: bars_data[symbol] = {'bar_data': None} return bars_data def assetswithconditions(self,stock_assets): cond = { 'class': ['us_equity'], 'exchange': ['NASDAQ', 'NYSE'], 'status': ['active'], 'tradable': [True], 'marginable': [True], 'shortable': [True], 'easy_to_borrow': [True], 'fractionable': [True] } assets_with_conditions = [] asset_symbol_dict = {} for asset in stock_assets: # Skip symbols with '.' or '/' (preferred shares, warrants, etc.) if '.' in asset.symbol or '/' in asset.symbol: continue if (asset.__getattr__('class') in cond['class'] and asset.exchange in cond['exchange'] and asset.status in cond['status'] and asset.tradable in cond['tradable'] and asset.marginable in cond['marginable'] and asset.shortable in cond['shortable'] and asset.easy_to_borrow in cond['easy_to_borrow'] and asset.fractionable in cond['fractionable'] ): assets_with_conditions.append(asset) asset_no_comma = asset.name.replace(',', '') asset_first_word = asset_no_comma.split()[0] asset_symbol_dict[asset.symbol] = asset._raw asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word sorted_dict = dict(sorted(asset_symbol_dict.items())) # print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}') # print(f'assets_with_conditions = {assets_with_conditions}') return assets_with_conditions, sorted_dict def get_top_volume_stocks(self,num_stocks=10): try: # Get all tradable assets assets = self.alpaca.alpaca.list_assets(status='active') # tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable} # print(f'tradable_assets = {tradable_assets}') assets_with_conditions, sorted_dict = self.assetswithconditions(assets) # print(f'sorted_dict = {sorted_dict}') # Fetch bar data for all tradable assets # print(f'sorted_dict.keys()={sorted_dict.keys()}') tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D') # Extract volume and calculate the top 10 stocks by volume volume_data = { symbol: info['bar_data']['volume'] for symbol, info in tradable_assets.items() if info['bar_data'] is not None } top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks] logger.info(f'top_volume_stocks = {top_volume_stocks}') return top_volume_stocks except Exception as e: logger.error(f"Error fetching top volume stocks: {e}") return [] def get_historical_data(self, symbols): data = {} for symbol in symbols: try: # Pull historical data from 2000-01-01 to today, daily interval ticker = yf.Ticker(symbol) hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d') data[symbol] = hist except Exception as e: logger.error(f"Error getting data for {symbol}: {e}") return data class TradingApp: def __init__(self): self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets') self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY']) self.analyzer = StockAnalyzer(self.alpaca) self.data = self.analyzer.get_historical_data(self.analyzer.symbols) self.auto_trade_log = [] # Store automatic trade actions def get_newsapi_sentiment_and_headlines(self, symbol): """Get sentiment and headlines using NewsAPI for a symbol.""" sentiment_result = None article_headlines = [] try: sentiment_dict = self.sentiment.get_news_sentiment([symbol]) sentiment_result = sentiment_dict.get(symbol) articles = self.sentiment.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1) article_headlines = [a['title'] for a in articles.get('articles', [])[:5]] except Exception as e: logger.error(f"NewsAPI sentiment/headlines error for {symbol}: {e}") return sentiment_result, article_headlines def get_yfinance_sentiment_and_headlines(self, symbol): """Get sentiment and headlines using yfinance for a symbol.""" sentiment_result = None article_headlines = [] try: ticker = yf.Ticker(symbol) news_items = ticker.news if hasattr(ticker, "news") else [] article_headlines = [item.get('title') for item in news_items[:5] if item.get('title')] # Use VADER on yfinance headlines if available if article_headlines: compound_score = 0 for title in article_headlines: score = self.sentiment.sia.polarity_scores(title)['compound'] compound_score += score avg_score = compound_score / len(article_headlines) if avg_score > 0.1: sentiment_result = 'Positive' elif avg_score < -0.1: sentiment_result = 'Negative' else: sentiment_result = 'Neutral' except Exception as e: logger.error(f"yfinance sentiment/headlines error for {symbol}: {e}") return sentiment_result, article_headlines def get_combined_sentiment_and_headlines(self, symbol): """Try NewsAPI first, fallback to yfinance if needed.""" sentiment_result, article_headlines = self.get_newsapi_sentiment_and_headlines(symbol) if not article_headlines: sentiment_result, article_headlines = self.get_yfinance_sentiment_and_headlines(symbol) return sentiment_result, article_headlines def display_charts(self): # Dynamically adjust columns based on number of stocks and available width symbols = list(self.data.keys()) if not symbols: st.warning("No stock data available to display charts.") return # Exit the function if no symbols are available symbol_to_name = self.analyzer.symbol_to_name n = len(symbols) # Calculate columns based on n for best fit cols = 3 rows = (n + cols - 1) // cols subplot_titles = [ f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols ] fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles) for idx, symbol in enumerate(symbols): df = self.data[symbol] if not df.empty: row = idx // cols + 1 col = idx % cols + 1 fig.add_trace( go.Scatter( x=df.index, y=df['Close'], mode='lines', name=symbol, hovertemplate=f"%{{x}}
{symbol}: %{{y:.2f}}" ), row=row, col=col ) fig.update_layout( title="Top Volume Stocks - Price Charts (Since 2023)", height=max(400 * rows, 600), showlegend=False, dragmode=False, ) # Enable scroll-zoom for each subplot (individual zoom) fig.update_layout( xaxis=dict(fixedrange=False), yaxis=dict(fixedrange=False), ) for i in range(1, rows * cols + 1): fig.layout[f'xaxis{i}'].update(fixedrange=False) fig.layout[f'yaxis{i}'].update(fixedrange=False) st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True}) def manual_trade(self): # Move all user inputs to the sidebar with st.sidebar: st.header("Manual Trade") symbol = st.text_input('Enter stock symbol') # --- Sentiment Check Feature (refactored) --- sentiment_result = None article_headlines = [] if st.button("Check Sentiment"): if symbol: sentiment_result, article_headlines = self.get_combined_sentiment_and_headlines(symbol) else: sentiment_result = None article_headlines = [] if sentiment_result is not None: st.markdown(f"**Sentiment for {symbol.upper()}:** {sentiment_result if sentiment_result in ['Positive', 'Negative', 'Neutral'] else 'No sentiment available'}") elif sentiment_result is None and st.session_state.get("Check Sentiment"): st.markdown("**Sentiment:** No sentiment available") if article_headlines: st.markdown("**Recent Headlines:**") for headline in article_headlines: st.write(f"- {headline}") elif sentiment_result is not None and not article_headlines: st.markdown("_No headlines available._") # Fetch the current stock price dynamically using Alpaca's API def get_stock_price(symbol): try: if not symbol: return None last_trade = self.alpaca.alpaca.get_latest_trade(symbol) return last_trade.price except Exception as e: logger.error(f"Error fetching stock price for {symbol}: {e}") return None # Update stock price when a new symbol is entered if symbol: if "stock_price" not in st.session_state or st.session_state.get("last_symbol") != symbol: st.session_state["stock_price"] = get_stock_price(symbol) st.session_state["last_symbol"] = symbol stock_price = st.session_state.get("stock_price") # Explicitly display the stock price below the input field if stock_price is not None: st.write(f"Current stock price for {symbol.upper()}: ${stock_price:,.2f}") else: st.write("Enter a valid stock symbol to see the price.") # Allow user to enter either quantity or amount trade_option = st.radio("Trade Option", ["Enter Quantity", "Enter Amount"]) qty = st.number_input('Enter quantity', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Quantity" else None amount = st.number_input('Enter amount ($)', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Amount" else None # Dynamically calculate the other field if stock_price: if trade_option == "Enter Quantity" and qty: amount = qty * stock_price st.write(f"Calculated Amount: ${amount:,.2f}") elif trade_option == "Enter Amount" and amount: qty = float(amount / stock_price) st.write(f"Calculated Quantity: {qty:,.2f}") action = st.selectbox('Action', ['Buy', 'Sell']) if st.button('Execute'): if stock_price and qty: is_market_open = self.alpaca.get_market_status() if action == 'Buy': order = self.alpaca.buy(symbol, qty, reason="Manual Trade") else: order = self.alpaca.sell(symbol, qty, reason="Manual Trade") if order: if not is_market_open: _, _, next_open, _ = get_market_times(self.alpaca.alpaca) next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown" st.warning(f"Market is currently closed. The {action.lower()} order for {qty} shares of {symbol} has been submitted and will execute when the market opens at {next_open_time}.") else: st.success(f"Order executed: {action} {qty} shares of {symbol}") else: st.error("Order failed") else: st.error("Please enter a valid stock symbol and trade details.") # Display portfolio information in the sidebar (restored) st.header("Alpaca Cash Portfolio") def refresh_portfolio(): account = self.alpaca.alpaca.get_account() portfolio_data = { "Metric": ["Cash Balance", "Buying Power", "Equity", "Portfolio Value"], "Value": [ f"${int(float(account.cash)):,.0f}", f"${int(float(account.buying_power)):,.0f}", f"${int(float(account.equity)):,.0f}", f"${int(float(account.portfolio_value)):,.0f}" ] } df = pd.DataFrame(portfolio_data) st.table(df.to_dict(orient="records")) # Convert DataFrame to a list of dictionaries refresh_portfolio() st.button("Refresh Portfolio", on_click=refresh_portfolio) def auto_trade_based_on_sentiment(self, sentiment): """Execute trades based on sentiment analysis and return actions taken.""" actions = self._execute_sentiment_trades(sentiment) self.auto_trade_log = actions return actions def _execute_sentiment_trades(self, sentiment): """Helper method to execute trades based on sentiment. Used by both auto_trade_based_on_sentiment and background_auto_trade.""" actions = [] symbol_to_name = self.analyzer.symbol_to_name for symbol, sentiment_value in sentiment.items(): # Use refactored sentiment logic for each symbol if sentiment_value is None or sentiment_value not in ['Positive', 'Negative', 'Neutral']: sentiment_value, _ = self.get_combined_sentiment_and_headlines(symbol) action = None is_market_open = self.alpaca.get_market_status() if sentiment_value == 'Positive': order = self.alpaca.buy(symbol, 1, reason="Sentiment: Positive") action = 'Buy' elif sentiment_value == 'Negative': order = self.alpaca.sell(symbol, 1, reason="Sentiment: Negative") action = 'Sell' else: order = None action = 'Hold' logger.info(f"Held {symbol}") if order: if not is_market_open: _, _, next_open, _ = get_market_times(self.alpaca.alpaca) next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown" logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.") else: logger.info(f"Order executed: {action} 1 share of {symbol}") actions.append({ 'symbol': symbol, 'company_name': symbol_to_name.get(symbol, ''), 'sentiment': sentiment_value, 'action': action }) return actions def background_auto_trade(app): """This function runs in a background thread and updates session state with automatic trades.""" while True: start_time = time.time() # Record the start time of the iteration sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols) # Use the shared method to execute trades actions = app._execute_sentiment_trades(sentiment) # Create log entry log_entry = { "timestamp": datetime.now().isoformat(), "actions": actions, "sentiment": sentiment } # Update session state - ensure the UI reflects the latest data if AUTO_TRADE_LOG_KEY not in st.session_state: st.session_state[AUTO_TRADE_LOG_KEY] = [] st.session_state[AUTO_TRADE_LOG_KEY].append(log_entry) # Limit size to avoid memory issues (keep last 50 entries) if len(st.session_state[AUTO_TRADE_LOG_KEY]) > 50: st.session_state[AUTO_TRADE_LOG_KEY] = st.session_state[AUTO_TRADE_LOG_KEY][-50:] # Log the update logger.info(f"Auto-trade completed. Actions: {actions}") # Calculate the time taken for this iteration elapsed_time = time.time() - start_time sleep_time = max(0, AUTO_TRADE_INTERVAL - elapsed_time) # Ensure non-negative sleep time logger.info(f"Sleeping for {sleep_time:.2f} seconds before the next auto-trade.") time.sleep(sleep_time) def get_auto_trade_log(): """Get the auto trade log from session state.""" if AUTO_TRADE_LOG_KEY not in st.session_state: st.session_state[AUTO_TRADE_LOG_KEY] = [] return st.session_state[AUTO_TRADE_LOG_KEY] def get_market_times(alpaca_api): try: clock = alpaca_api.get_clock() is_open = clock.is_open now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York') next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York') next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York') return is_open, now, next_open, next_close except Exception as e: logger.error(f"Error fetching market times: {e}") return None, None, None, None def main(): st.title("Ben's Stock Trading Application") st.markdown("This is a fun stock trading application that uses a combination of key frameworks like Alpaca API, yfinance, and News API for stock information and trading. Come and trade my money! Well, it's a paper account, so it's not real money. But still, have fun!") if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']: st.error("Please configure your ALPACA_API_KEY and NEWS_API_KEY") return # Prevent Streamlit from rerunning the script on every widget interaction # Use session state to persist objects and only update when necessary if "app_instance" not in st.session_state: st.session_state["app_instance"] = TradingApp() app = st.session_state["app_instance"] # Create two columns for market status and portfolio holdings col1, col2 = st.columns([1, 1]) # Column 1: Portfolio holdings bar chart with col1: st.subheader("Portfolio Holdings") holdings_container = st.empty() # Create a container for dynamic updates def update_holdings(): holdings = app.alpaca.getHoldings() if holdings: df = pd.DataFrame(list(holdings.items()), columns=['Ticker', 'Market Value']) fig = go.Figure( data=[ go.Bar( x=df['Ticker'], y=df['Market Value'], marker=dict(color=df['Market Value'], colorscale='Viridis'), ) ] ) fig.update_layout( xaxis_title="Ticker", yaxis_title="$ USD", height=400, ) # Use a unique key by appending the current timestamp holdings_container.plotly_chart(fig, use_container_width=True, key=f"portfolio_holdings_chart_{time.time()}") else: holdings_container.info("No holdings to display.") # Periodically refresh the holdings plot update_holdings() st.button("Refresh Holdings", on_click=update_holdings) # Add an expandable section for detailed holdings st.subheader("Detailed Holdings") with st.expander("View Detailed Holdings"): holdings = app.alpaca.getHoldings() # Use self.alpaca instead of app.alpaca if holdings: # Get positions to access both market value and quantity positions = app.alpaca.alpaca.list_positions() positions_data = [] for position in positions: positions_data.append({ "Ticker": position.symbol, "Shares": float(position.qty), "Amount (USD)": round(float(position.market_value)) }) detailed_holdings = pd.DataFrame(positions_data) st.table(detailed_holdings) else: st.info("No holdings to display.") # Column 2: Market status with col2: is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca) market_status = "🟢 Market is OPEN" if is_open else "🔴 Market is CLOSED" st.markdown(f"### {market_status}") if now is not None: st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}") if is_open and next_close is not None: st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET") seconds_left = int((next_close - now).total_seconds()) st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}") elif not is_open and next_open is not None: st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET") seconds_left = int((next_open - now).total_seconds()) st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}") # Initialize auto trade log in session state if needed if AUTO_TRADE_LOG_KEY not in st.session_state: st.session_state[AUTO_TRADE_LOG_KEY] = [] # Only start the background thread once if "auto_trade_thread_started" not in st.session_state: thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True) thread.start() st.session_state["auto_trade_thread_started"] = True # Main area: plots and data app.manual_trade() app.display_charts() # Read and display latest auto-trade actions st.write("Automatic Trading Actions Based on Sentiment (background):") auto_trade_log = get_auto_trade_log() if auto_trade_log: # Show the most recent entry last_entry = auto_trade_log[-1] st.write(f"Last checked: {last_entry['timestamp']}") df = pd.DataFrame(last_entry["actions"]) if "company_name" in df.columns: df = df[["symbol", "company_name", "sentiment", "action"]] st.dataframe(df) st.write("Sentiment Analysis (latest):") st.write(last_entry["sentiment"]) # Plot buy/sell actions over time st.write("Auto-Trading History (Buy/Sell Actions Over Time):") history = [] for entry in auto_trade_log: ts = entry["timestamp"] for act in entry["actions"]: if act["action"] in ("Buy", "Sell"): history.append({ "timestamp": ts, "symbol": act["symbol"], "action": act["action"] }) if history: hist_df = pd.DataFrame(history) if not hist_df.empty: hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"]) hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}).astype(float) pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum") st.line_chart(pivot.fillna(0)) else: st.info("Waiting for first background auto-trade run...") if __name__ == "__main__": main()