Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import itertools
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
|
6 |
+
# Import and download necessary NLTK data for tokenization.
|
7 |
+
import nltk
|
8 |
+
from nltk.translate.bleu_score import sentence_bleu
|
9 |
+
|
10 |
+
nltk.download('punkt')
|
11 |
+
|
12 |
+
# Import the ROUGE metric implementation.
|
13 |
+
from rouge import Rouge
|
14 |
+
|
15 |
+
rouge = Rouge()
|
16 |
+
|
17 |
+
from datasets import load_dataset
|
18 |
+
import streamlit as st
|
19 |
+
|
20 |
+
# Use name="sample-10BT" to use the 10BT sample.
|
21 |
+
fw = load_dataset("HuggingFaceFW/fineweb", name="CC-MAIN-2024-10", split="train", streaming=True)
|
22 |
+
|
23 |
+
|
24 |
+
# Define helper functions for character-level accuracy and precision.
|
25 |
+
def char_accuracy(true_output, model_output):
|
26 |
+
# Compare matching characters in corresponding positions.
|
27 |
+
matches = sum(1 for c1, c2 in zip(true_output, model_output) if c1 == c2)
|
28 |
+
# Account for any extra characters in either string.
|
29 |
+
total = max(len(true_output), len(model_output))
|
30 |
+
return matches / total if total > 0 else 1.0
|
31 |
+
|
32 |
+
|
33 |
+
def char_precision(true_output, model_output):
|
34 |
+
# Precision is matching characters divided by the length of the model's output.
|
35 |
+
matches = sum(1 for c1, c2 in zip(true_output, model_output) if c1 == c2)
|
36 |
+
return matches / len(model_output) if len(model_output) > 0 else 0.0
|
37 |
+
|
38 |
+
|
39 |
+
# Initialize Streamlit app
|
40 |
+
st.title("Model Evaluation App")
|
41 |
+
st.write("This app evaluates a model's ability to reverse input text character by character.")
|
42 |
+
|
43 |
+
# Parameters
|
44 |
+
word_threshold = st.sidebar.number_input("Word Threshold", value=100, step=10)
|
45 |
+
num_samples = st.sidebar.number_input("Number of Samples", value=1, step=1)
|
46 |
+
|
47 |
+
# Get samples
|
48 |
+
samples = list(itertools.islice(fw, num_samples))
|
49 |
+
acc = []
|
50 |
+
pres = []
|
51 |
+
bleu = []
|
52 |
+
rouges = []
|
53 |
+
|
54 |
+
for x in samples:
|
55 |
+
nextt = x["text"].split(" ")
|
56 |
+
for n in range(len(nextt) // word_threshold):
|
57 |
+
inp = nextt[word_threshold * n: word_threshold * (n + 1)]
|
58 |
+
inp = " ".join(inp).replace("\n", "")
|
59 |
+
|
60 |
+
# Display the input text
|
61 |
+
st.subheader("Input Text")
|
62 |
+
st.write(inp)
|
63 |
+
|
64 |
+
prompt = (
|
65 |
+
"You are a helpful assistant that echoes the user's input, but backwards, "
|
66 |
+
"do not simply rearrange the words, reverse the user's input down to the character "
|
67 |
+
"(e.g. reverse Hello World to dlroW olleH). Surround the backwards version of the "
|
68 |
+
"user's input with <back> </back> tags. " + inp
|
69 |
+
)
|
70 |
+
|
71 |
+
# Ground truth: reverse the input (character by character)
|
72 |
+
true_output = inp[::-1]
|
73 |
+
st.subheader("True Output")
|
74 |
+
st.write(true_output)
|
75 |
+
|
76 |
+
# Get the model output (Here, we simulate it or integrate your model inference)
|
77 |
+
# For demonstration purposes, we'll reverse the input as the model output
|
78 |
+
# Replace this part with your model's actual output
|
79 |
+
model_output_full = "<back>" + true_output + "</back>"
|
80 |
+
|
81 |
+
# Extract the text between <back> and </back> tags
|
82 |
+
tag1 = model_output_full.find("<back>")
|
83 |
+
tag2 = model_output_full.find("</back>")
|
84 |
+
model_output = model_output_full[tag1 + 6: tag2]
|
85 |
+
st.subheader("Model Output")
|
86 |
+
st.write(model_output)
|
87 |
+
|
88 |
+
# Tokenize both outputs for BLEU calculation
|
89 |
+
reference_tokens = nltk.word_tokenize(true_output)
|
90 |
+
candidate_tokens = nltk.word_tokenize(model_output)
|
91 |
+
|
92 |
+
# Compute BLEU score (using the single reference)
|
93 |
+
bleu_score = sentence_bleu([reference_tokens], candidate_tokens)
|
94 |
+
st.write("**BLEU Score:**", bleu_score)
|
95 |
+
|
96 |
+
# Compute ROUGE scores
|
97 |
+
rouge_scores = rouge.get_scores(model_output, true_output)
|
98 |
+
st.write("**ROUGE Scores:**")
|
99 |
+
st.json(rouge_scores)
|
100 |
+
|
101 |
+
# Compute character-level accuracy and precision
|
102 |
+
accuracy_metric = char_accuracy(true_output, model_output)
|
103 |
+
precision_metric = char_precision(true_output, model_output)
|
104 |
+
st.write("**Character Accuracy:**", accuracy_metric)
|
105 |
+
st.write("**Character Precision:**", precision_metric)
|
106 |
+
|
107 |
+
st.markdown("---")
|
108 |
+
|
109 |
+
# Append metrics to lists
|
110 |
+
acc.append(accuracy_metric)
|
111 |
+
pres.append(precision_metric)
|
112 |
+
bleu.append(bleu_score)
|
113 |
+
rouges.append(rouge_scores)
|
114 |
+
|
115 |
+
# Allow the user to download the metrics
|
116 |
+
if st.button("Download Metrics"):
|
117 |
+
with open('accuracy.pkl', 'wb') as file:
|
118 |
+
pickle.dump(acc, file)
|
119 |
+
with open('precision.pkl', 'wb') as file:
|
120 |
+
pickle.dump(pres, file)
|
121 |
+
with open('bleu.pkl', 'wb') as file:
|
122 |
+
pickle.dump(bleu, file)
|
123 |
+
with open('rouge.pkl', 'wb') as file:
|
124 |
+
pickle.dump(rouges, file)
|
125 |
+
st.success("Metrics saved successfully!")
|
126 |
+
|
127 |
+
# Provide download links
|
128 |
+
st.download_button('Download Accuracy Metrics', data=open('accuracy.pkl', 'rb'), file_name='accuracy.pkl')
|
129 |
+
st.download_button('Download Precision Metrics', data=open('precision.pkl', 'rb'), file_name='precision.pkl')
|
130 |
+
st.download_button('Download BLEU Metrics', data=open('bleu.pkl', 'rb'), file_name='bleu.pkl')
|
131 |
+
st.download_button('Download ROUGE Metrics', data=open('rouge.pkl', 'rb'), file_name='rouge.pkl')
|