|
import torch
|
|
import gradio as gd
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import init
|
|
import torchvision.transforms as transforms
|
|
|
|
'''MobileNetV3 in PyTorch.
|
|
|
|
See the paper "Inverted Residuals and Linear Bottlenecks:
|
|
Mobile Networks for Classification, Detection and Segmentation" for more details.
|
|
'''
|
|
|
|
|
|
|
|
class hswish(nn.Module):
|
|
def forward(self, x):
|
|
out = x * F.relu6(x + 3, inplace=True) / 6
|
|
return out
|
|
|
|
|
|
class hsigmoid(nn.Module):
|
|
def forward(self, x):
|
|
out = F.relu6(x + 3, inplace=True) / 6
|
|
return out
|
|
|
|
|
|
class SeModule(nn.Module):
|
|
def __init__(self, in_size, reduction=4):
|
|
super(SeModule, self).__init__()
|
|
self.se = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(1),
|
|
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(in_size // reduction),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(in_size),
|
|
hsigmoid()
|
|
)
|
|
|
|
def forward(self, x):
|
|
return x * self.se(x)
|
|
|
|
|
|
class Block(nn.Module):
|
|
'''expand + depthwise + pointwise'''
|
|
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
|
|
super(Block, self).__init__()
|
|
self.stride = stride
|
|
self.se = semodule
|
|
|
|
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(expand_size)
|
|
self.nolinear1 = nolinear
|
|
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(expand_size)
|
|
self.nolinear2 = nolinear
|
|
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(out_size)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride == 1 and in_size != out_size:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(out_size),
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = self.nolinear1(self.bn1(self.conv1(x)))
|
|
out = self.nolinear2(self.bn2(self.conv2(out)))
|
|
out = self.bn3(self.conv3(out))
|
|
if self.se != None:
|
|
out = self.se(out)
|
|
out = out + self.shortcut(x) if self.stride==1 else out
|
|
return out
|
|
|
|
class MobileNetV3_Small(nn.Module):
|
|
def __init__(self, num_classes= 30):
|
|
super(MobileNetV3_Small, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(16)
|
|
self.hs1 = hswish()
|
|
|
|
self.bneck = nn.Sequential(
|
|
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
|
|
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
|
|
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
|
|
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
|
|
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
|
|
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
|
|
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
|
|
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
|
|
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
|
|
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
|
|
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
|
|
)
|
|
|
|
|
|
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(576)
|
|
self.hs2 = hswish()
|
|
self.linear3 = nn.Linear(576, 1280)
|
|
self.bn3 = nn.BatchNorm1d(1280)
|
|
self.hs3 = hswish()
|
|
self.linear4 = nn.Linear(1280, num_classes)
|
|
self.init_params()
|
|
|
|
def init_params(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
init.constant_(m.weight, 1)
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
init.normal_(m.weight, std=0.001)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
out = self.hs1(self.bn1(self.conv1(x)))
|
|
out = self.bneck(out)
|
|
out = self.hs2(self.bn2(self.conv2(out)))
|
|
out = F.avg_pool2d(out, 7)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.hs3(self.bn3(self.linear3(out)))
|
|
out = self.linear4(out)
|
|
return out
|
|
|
|
|
|
|
|
"""creating modelinstance"""
|
|
model = MobileNetV3_Small().to("cpu")
|
|
model.load_state_dict( torch.load("MobileNet3_small_full.pth"))
|
|
classes = ['antelope',
|
|
'buffalo',
|
|
'chimpanzee',
|
|
'cow',
|
|
'deer',
|
|
'dolphin',
|
|
'elephant',
|
|
'fox',
|
|
'giant+panda',
|
|
'giraffe',
|
|
'gorilla',
|
|
'grizzly+bear',
|
|
'hamster',
|
|
'hippopotamus',
|
|
'horse',
|
|
'humpback+whale',
|
|
'leopard',
|
|
'lion',
|
|
'moose',
|
|
'otter',
|
|
'ox',
|
|
'pig',
|
|
'polar+bear',
|
|
'rabbit',
|
|
'rhinoceros',
|
|
'seal',
|
|
'sheep',
|
|
'squirrel',
|
|
'tiger',
|
|
'zebra']
|
|
|
|
def predicts(img):
|
|
model.eval()
|
|
with torch.inference_mode:
|
|
logits = model(img.unsqueez(dim=0))
|
|
preds = logits.argmax(dim=1)
|
|
return classes[preds]
|
|
|
|
"""gradio inteface"""
|
|
demo = gd.Interface(predicts ,gd.Image("Image", width=244, height=244, image_mode="RGB", ))
|
|
|
|
|
|
"""launch interface"""
|
|
if __name__ == "__main__":
|
|
demo.launch() |