File size: 5,768 Bytes
58eb246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import gradio as gr
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torchvision.transforms as transforms
from PIL import Image

# MobileNetV3 Model Definition
class hswish(nn.Module):
    def forward(self, x):
        return x * F.relu6(x + 3) / 6

class hsigmoid(nn.Module):
    def forward(self, x):
        return F.relu6(x + 3) / 6

class SeModule(nn.Module):
    def __init__(self, in_size, reduction=4):
        super().__init__()
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_size, in_size//reduction, 1, bias=False),
            nn.BatchNorm2d(in_size//reduction),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_size//reduction, in_size, 1, bias=False),
            nn.BatchNorm2d(in_size),
            hsigmoid()
        )

    def forward(self, x):
        return x * self.se(x)

class Block(nn.Module):
    def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
        super().__init__()
        self.stride = stride
        self.se = semodule
        self.conv1 = nn.Conv2d(in_size, expand_size, 1, 1, 0, bias=False)
        self.bn1 = nn.BatchNorm2d(expand_size)
        self.nolinear1 = nolinear
        self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size, stride, kernel_size//2, groups=expand_size, bias=False)
        self.bn2 = nn.BatchNorm2d(expand_size)
        self.nolinear2 = nolinear
        self.conv3 = nn.Conv2d(expand_size, out_size, 1, 1, 0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_size)
        self.shortcut = nn.Sequential()
        if stride == 1 and in_size != out_size:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_size, out_size, 1, 1, 0, bias=False),
                nn.BatchNorm2d(out_size),
            )

    def forward(self, x):
        out = self.nolinear1(self.bn1(self.conv1(x)))
        out = self.nolinear2(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        if self.se: out = self.se(out)
        return out + self.shortcut(x) if self.stride==1 else out

class MobileNetV3_Small(nn.Module):
    def __init__(self, num_classes=30):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, 2, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.hs1 = hswish()
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(), SeModule(16), 2),
            Block(3, 16, 72, 24, nn.ReLU(), None, 2),
            Block(3, 24, 88, 24, nn.ReLU(), None, 1),
            Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
        )
        self.conv2 = nn.Conv2d(96, 576, 1, 1, 0, bias=False)
        self.bn2 = nn.BatchNorm2d(576)
        self.hs2 = hswish()
        self.linear3 = nn.Linear(576, 1280)
        self.bn3 = nn.BatchNorm1d(1280)
        self.hs3 = hswish()
        self.linear4 = nn.Linear(1280, num_classes)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None: init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None: init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.hs1(self.bn1(self.conv1(x)))
        x = self.bneck(x)
        x = self.hs2(self.bn2(self.conv2(x)))
        x = F.avg_pool2d(x, x.size()[2:])
        x = x.view(x.size(0), -1)
        x = self.hs3(self.bn3(self.linear3(x)))
        return self.linear4(x)

"""!!!!Change the paths to the image you want to predict and the the model save location!!!!"""

# Initialize Model using the provided Dict
model = MobileNetV3_Small().cpu()
model.load_state_dict(torch.load("D:/Projects/Python/MulticlassCNN/Wildlife_Animal_Classifier/MobileNet3_small_StateDictionary.pth", map_location='cpu', weights_only= True))
model.eval()

# Class Labels that can be detected
classes = [
    'antelope', 'buffalo', 'chimpanzee', 'cow', 'deer', 'dolphin',
    'elephant', 'fox', 'giant+panda', 'giraffe', 'gorilla', 'grizzlybear',
    'hamster', 'hippopotamus', 'horse', 'humpbackwhale', 'leopard', 'lion',
    'moose', 'otter', 'ox', 'pig', 'polarbear', 'rabbit', 'rhinoceros',
    'seal', 'sheep', 'squirrel', 'tiger', 'zebra'
]


# Preprocessing
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Predict Image Classes
def predict(imagepath:str):
    """Process one image and returns prediction"""
    img = Image.open(imagepath)
    img = preprocess(img)
    with torch.inference_mode():
        outputs = model(img.unsqueeze(dim=0)) # because the model was trained on batches
        preds = outputs.argmax(dim=1)
    print(f"The image shows the class: {classes[preds]}")    

predict("D:/Projects/Python/MulticlassCNN/Wildlife_Animal_Classifier/test_images/antelope/antelope(1).jpg")