File size: 5,768 Bytes
58eb246 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import gradio as gr
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torchvision.transforms as transforms
from PIL import Image
# MobileNetV3 Model Definition
class hswish(nn.Module):
def forward(self, x):
return x * F.relu6(x + 3) / 6
class hsigmoid(nn.Module):
def forward(self, x):
return F.relu6(x + 3) / 6
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super().__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, in_size//reduction, 1, bias=False),
nn.BatchNorm2d(in_size//reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size//reduction, in_size, 1, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super().__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, 1, 1, 0, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size, stride, kernel_size//2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, 1, 1, 0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se: out = self.se(out)
return out + self.shortcut(x) if self.stride==1 else out
class MobileNetV3_Small(nn.Module):
def __init__(self, num_classes=30):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 3, 2, 1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(), SeModule(16), 2),
Block(3, 16, 72, 24, nn.ReLU(), None, 2),
Block(3, 24, 88, 24, nn.ReLU(), None, 1),
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
)
self.conv2 = nn.Conv2d(96, 576, 1, 1, 0, bias=False)
self.bn2 = nn.BatchNorm2d(576)
self.hs2 = hswish()
self.linear3 = nn.Linear(576, 1280)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = hswish()
self.linear4 = nn.Linear(1280, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None: init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None: init.constant_(m.bias, 0)
def forward(self, x):
x = self.hs1(self.bn1(self.conv1(x)))
x = self.bneck(x)
x = self.hs2(self.bn2(self.conv2(x)))
x = F.avg_pool2d(x, x.size()[2:])
x = x.view(x.size(0), -1)
x = self.hs3(self.bn3(self.linear3(x)))
return self.linear4(x)
"""!!!!Change the paths to the image you want to predict and the the model save location!!!!"""
# Initialize Model using the provided Dict
model = MobileNetV3_Small().cpu()
model.load_state_dict(torch.load("D:/Projects/Python/MulticlassCNN/Wildlife_Animal_Classifier/MobileNet3_small_StateDictionary.pth", map_location='cpu', weights_only= True))
model.eval()
# Class Labels that can be detected
classes = [
'antelope', 'buffalo', 'chimpanzee', 'cow', 'deer', 'dolphin',
'elephant', 'fox', 'giant+panda', 'giraffe', 'gorilla', 'grizzlybear',
'hamster', 'hippopotamus', 'horse', 'humpbackwhale', 'leopard', 'lion',
'moose', 'otter', 'ox', 'pig', 'polarbear', 'rabbit', 'rhinoceros',
'seal', 'sheep', 'squirrel', 'tiger', 'zebra'
]
# Preprocessing
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Predict Image Classes
def predict(imagepath:str):
"""Process one image and returns prediction"""
img = Image.open(imagepath)
img = preprocess(img)
with torch.inference_mode():
outputs = model(img.unsqueeze(dim=0)) # because the model was trained on batches
preds = outputs.argmax(dim=1)
print(f"The image shows the class: {classes[preds]}")
predict("D:/Projects/Python/MulticlassCNN/Wildlife_Animal_Classifier/test_images/antelope/antelope(1).jpg") |