Deliverable2 / deliverable2.py
Inara132000's picture
Update deliverable2.py
a7e3938 verified
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
import random
class URLValidator:
def rate_url_validity(self, user_query: str, url: str) -> dict:
"""Simulates rating the validity of a URL."""
content_relevance = random.randint(0, 100)
bias_score = random.randint(0, 100)
final_validity_score = (content_relevance + bias_score) // 2
return {
"raw_score": {
"Content Relevance": content_relevance,
"Bias Score": bias_score,
"Final Validity Score": final_validity_score
}
}
def __init__(self):
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
def fetch_page_content(self, url: str) -> str:
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
return " ".join([p.text for p in soup.find_all("p")])
except requests.RequestException:
return ""
def compute_similarity_score(self, user_query: str, content: str) -> int:
if not content:
return 0
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
def detect_bias(self, content: str) -> int:
if not content:
return 50
sentiment_result = self.sentiment_analyzer(content[:512])[0]
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
def validate_url(self, user_query, url_to_check):
try:
result = self.rate_url_validity(user_query, url_to_check)
print("Validation Result:", result)
if "Validation Error" in result:
return {"Error": result["Validation Error"]}
return {
"Content Relevance Score": f"{result['raw_score']['Content Relevance']} / 100",
"Bias Score": f"{result['raw_score']['Bias Score']} / 100",
"Final Validity Score": f"{result['raw_score']['Final Validity Score']} / 100"
}
except Exception as e:
return {"Error": str(e)}
queries_urls = [
("How blockchain works", "https://www.ibm.com/topics/what-is-blockchain"),
("Climate change effects", "https://www.nationalgeographic.com/environment/article/climate-change-overview"),
("COVID-19 vaccine effectiveness", "https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness.html"),
("Latest AI advancements", "https://www.technologyreview.com/topic/artificial-intelligence"),
("Stock market trends", "https://www.bloomberg.com/markets"),
("Healthy diet tips", "https://www.healthline.com/nutrition/healthy-eating-tips"),
("Space exploration missions", "https://www.nasa.gov/missions"),
("Electric vehicle benefits", "https://www.tesla.com/benefits"),
("History of the internet", "https://www.history.com/topics/inventions/history-of-the-internet"),
("Nutritional benefits of a vegan diet", "https://www.hsph.harvard.edu/nutritionsource/healthy-weight/diet-reviews/vegan-diet/"),
("Mental health awareness", "https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response")
]
validator = URLValidator()
results = [validator.rate_url_validity(query, url) for query, url in queries_urls]
for result in results:
print(result)
formatted_output = []
for query, url in queries_urls:
output_entry = {
"Query": query,
"URL": url,
"Function Rating": random.randint(1, 5),
"Custom Rating": random.randint(1, 5)
}
formatted_output.append(output_entry)
formatted_output