File size: 3,450 Bytes
542c815
3f8e328
542c815
 
 
d6e753e
 
 
8a357d1
4c3647c
 
3267028
018621a
3267028
b98efed
542c815
 
 
988f91c
 
542c815
 
4c3647c
 
 
 
 
 
04ba376
4c3647c
 
 
 
 
 
 
 
 
 
 
 
 
70974c3
4c3647c
 
 
 
 
 
 
 
 
 
 
 
 
 
542c815
4c3647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d909bca
c530952
6ca28a8
4941fcb
6ca28a8
d909bca
4c3647c
 
 
 
 
 
 
 
 
 
 
 
d909bca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
import requests
from io import BytesIO

net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

def resize_image(image):
    image = image.convert('RGB')
    model_input_size = (1024, 1024)
    image = image.resize(model_input_size, Image.BILINEAR)
    return image

def get_url_image(url):
    headers = {'User-Agent': 'gradio-app'}
    response = requests.get(url, headers=headers)
    print(f"Response status code: {response.status_code}")
    response.raise_for_status()  # Raise an error for bad status codes
    return BytesIO(response.content)

def load_image(image_source):
    try:
        if isinstance(image_source, str):  # Check if input is a URL
            print(f"Loading image from URL: {image_source}")
            image = Image.open(get_url_image(image_source))
        else:
            print("Loading image from file upload")
            image = Image.fromarray(image_source)
        print("Image loaded successfully")
        return image
    except Exception as e:
        print(f"Error loading image: {e}")
        raise

def process(image_source):
    try:
        print("Processing image")
        # Load and prepare input
        orig_image = load_image(image_source)
        w, h = orig_im_size = orig_image.size
        image = resize_image(orig_image)
        im_np = np.array(image)
        im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
        im_tensor = torch.unsqueeze(im_tensor, 0)
        im_tensor = torch.divide(im_tensor, 255.0)
        im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
        if torch.cuda.is_available():
            im_tensor = im_tensor.cuda()

        # Inference
        result = net(im_tensor)
        # Post-process
        result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
        ma = torch.max(result)
        mi = torch.min(result)
        result = (result - mi) / (ma - mi)
        # Image to PIL
        im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
        pil_im = Image.fromarray(np.squeeze(im_array))
        # Paste the mask on the original image
        new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
        new_im.paste(orig_image, mask=pil_im)
        print("Image processed successfully")
        return new_im
    except Exception as e:
        print(f"Error during processing: {e}")
        return f"Error: {e}"

title = "Background Removal"
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> 
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
"""
examples = [['./input.jpg'],]

demo = gr.Interface(
    fn=process,
    inputs=[
        gr.Image(type="numpy", label="Upload Image"),
        gr.Textbox(label="Image URL")
    ],
    outputs="image",
    examples=examples,
    title=title,
    description=description
)

if __name__ == "__main__":
    demo.launch(share=False)