"""LangGraph: agent graph w/ tools""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def power(a: float, b: float) -> float: """ Get the power of two numbers. Args: a (float): the first number b (float): the second number """ return a**b @tool def square_root(a: float) -> float | complex: """ Get the square root of a number. Args: a (float): the number to get the square root of """ if a >= 0: return a**0.5 return cmath.sqrt(a) @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) """ tools = [ multiply, add, subtract, divide, modulus, power, square_root, wiki_search, web_search, ] """ tools = [web_search] # Build graph function def build_graph(provider: str = "google"): """Build the graph""" # Load environment variables from .env file if provider == "huggingface": # Huggingface endpoint """ llm = ChatHuggingFace( llm=HuggingFaceEndpoint( #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B", endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct", #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B", temperature=0, ), ) """ llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", #endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4", #endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0", task="text-generation", # for chat‐style use “text-generation” #max_new_tokens=1024, #do_sample=False, #repetition_penalty=1.03, temperature=0, ), #verbose=True, ) elif provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) #llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0) else: raise ValueError("Invalid provider. Choose 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]} #def retriever(state: MessagesState): # """Retriever node""" # return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) #builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) #builder.add_edge(START, "retriever") builder.add_edge(START, "assistant") #builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) #builder.add_edge("tools", "retriever") builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph(provider="huggingface") # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()