File size: 6,569 Bytes
24addaa
96fcc84
 
 
f9913bf
 
 
96fcc84
58972a2
96fcc84
 
f9913bf
 
 
167bbcb
96fcc84
 
 
 
 
 
 
 
 
 
 
 
03a3ecc
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24addaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a09be
96fcc84
 
 
17a09be
96fcc84
 
 
 
 
 
 
 
24addaa
96fcc84
5918a89
 
96fcc84
 
 
 
100d5da
96fcc84
 
 
 
 
 
24addaa
 
96fcc84
17a09be
96fcc84
100d5da
 
 
96fcc84
 
d50d797
96fcc84
 
6cef8a6
24addaa
af92f70
96fcc84
 
b189c98
f46b08a
 
08eb95e
0afb963
96fcc84
 
af92f70
6cef8a6
 
f30118e
98521b0
08eb95e
f30118e
 
58e696d
 
 
6cef8a6
 
58e696d
af92f70
5f41b31
 
 
543f544
 
f2ed73d
96fcc84
6cef8a6
 
96fcc84
 
0b88a22
96fcc84
 
2e8edbc
3dd09d5
38836ea
2e8edbc
0b88a22
 
 
 
96fcc84
 
3dd09d5
96fcc84
 
3dd09d5
78aec6e
3dd09d5
96fcc84
 
 
 
6fddcbb
 
96fcc84
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""LangGraph: agent graph w/ tools"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def power(a: float, b: float) -> float:
    """
    Get the power of two numbers.
    Args:
        a (float): the first number
        b (float): the second number
    """
    return a**b

@tool
def square_root(a: float) -> float | complex:
    """
    Get the square root of a number.
    Args:
        a (float): the number to get the square root of
    """
    if a >= 0:
        return a**0.5
    return cmath.sqrt(a)


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""

    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

""" 
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    power,
    square_root,
    wiki_search,
    web_search,
]
"""
tools = [web_search]


# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "huggingface":
        # Huggingface endpoint
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B",
                endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct",
                #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B",
                temperature=0,
            ),
        )
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                #endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4",
                #endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                task="text-generation",  # for chat‐style use “text-generation”
                #max_new_tokens=1024,
                #do_sample=False,
                #repetition_penalty=1.03,
                temperature=0,
            ),
            #verbose=True,
        )

    elif provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
        #llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0)
        
    else:
        raise ValueError("Invalid provider. Choose 'huggingface'.")
        
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)
    
    # Node
    def assistant(state: MessagesState):
        """Assistant node"""      
        return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
        
    
    #def retriever(state: MessagesState):
    #    """Retriever node"""
    #    return {"messages": [sys_msg] + state["messages"]}
   

    builder = StateGraph(MessagesState)
    #builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    #builder.add_edge(START, "retriever")
    builder.add_edge(START, "assistant")
    #builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    #builder.add_edge("tools", "retriever")
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="huggingface")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()