File size: 6,569 Bytes
24addaa 96fcc84 f9913bf 96fcc84 58972a2 96fcc84 f9913bf 167bbcb 96fcc84 03a3ecc 96fcc84 24addaa 96fcc84 17a09be 96fcc84 17a09be 96fcc84 24addaa 96fcc84 5918a89 96fcc84 100d5da 96fcc84 24addaa 96fcc84 17a09be 96fcc84 100d5da 96fcc84 d50d797 96fcc84 6cef8a6 24addaa af92f70 96fcc84 b189c98 f46b08a 08eb95e 0afb963 96fcc84 af92f70 6cef8a6 f30118e 98521b0 08eb95e f30118e 58e696d 6cef8a6 58e696d af92f70 5f41b31 543f544 f2ed73d 96fcc84 6cef8a6 96fcc84 0b88a22 96fcc84 2e8edbc 3dd09d5 38836ea 2e8edbc 0b88a22 96fcc84 3dd09d5 96fcc84 3dd09d5 78aec6e 3dd09d5 96fcc84 6fddcbb 96fcc84 6c7a180 96fcc84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
"""LangGraph: agent graph w/ tools"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def power(a: float, b: float) -> float:
"""
Get the power of two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a**b
@tool
def square_root(a: float) -> float | complex:
"""
Get the square root of a number.
Args:
a (float): the number to get the square root of
"""
if a >= 0:
return a**0.5
return cmath.sqrt(a)
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
"""
tools = [
multiply,
add,
subtract,
divide,
modulus,
power,
square_root,
wiki_search,
web_search,
]
"""
tools = [web_search]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "huggingface":
# Huggingface endpoint
"""
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
#endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B",
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct",
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B",
temperature=0,
),
)
"""
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
#endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
#endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4",
#endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
task="text-generation", # for chat‐style use “text-generation”
#max_new_tokens=1024,
#do_sample=False,
#repetition_penalty=1.03,
temperature=0,
),
#verbose=True,
)
elif provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
#llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0)
else:
raise ValueError("Invalid provider. Choose 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
#def retriever(state: MessagesState):
# """Retriever node"""
# return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
#builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
#builder.add_edge(START, "retriever")
builder.add_edge(START, "assistant")
#builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
#builder.add_edge("tools", "retriever")
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="huggingface")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|