File size: 7,864 Bytes
96fcc84
 
 
 
 
 
 
6c7a180
96fcc84
6c7a180
96fcc84
 
9d5e618
96fcc84
 
9d5e618
 
43173f2
96fcc84
 
 
 
 
 
 
 
 
 
 
 
03a3ecc
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a09be
96fcc84
 
17a09be
 
96fcc84
 
 
17a09be
96fcc84
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
6c7a180
96fcc84
 
 
 
6c7a180
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
 
 
 
17a09be
96fcc84
 
 
 
 
 
 
6cef8a6
96fcc84
af92f70
96fcc84
 
b189c98
f46b08a
 
0afb963
96fcc84
 
af92f70
6cef8a6
 
 
 
 
 
 
 
 
 
af92f70
 
96fcc84
6cef8a6
 
96fcc84
 
 
 
 
 
0251a1b
d33ed0b
0251a1b
96fcc84
0251a1b
96fcc84
 
 
 
 
0251a1b
96fcc84
 
6c7a180
96fcc84
 
6c7a180
 
 
96fcc84
 
 
 
 
 
 
 
 
 
 
 
 
6c7a180
96fcc84
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
#from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
#from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
#from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
#from langchain.tools.retriever import create_retriever_tool
#from supabase.client import Client, create_client

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:

    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""

    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}



# load the system prompt from the file
#with open("system_prompt.txt", "r", encoding="utf-8") as f:
#   system_prompt = f.read()

system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. 
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""".strip()
    
# System message
sys_msg = SystemMessage(content=system_prompt)

"""
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)
"""


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]

# Build graph function
def build_graph(provider: str = "huggingface"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "huggingface":
        # TODO: Add huggingface endpoint
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                #endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                #endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B",
                endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct",
                temperature=0,
            ),
        )
        """
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                task="text-generation",  # for chat‐style use “text-generation”
                max_new_tokens=1024,
                do_sample=False,
                repetition_penalty=1.03,
                temperature=0,
            ),
            verbose=True,
        )
        
    else:
        raise ValueError("Invalid provider. Choose 'huggingface'.")
        
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""

        return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
    """
    def retriever(state: MessagesState):
        #Retriever node
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}
    """

    builder = StateGraph(MessagesState)
    #builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    #builder.add_edge(START, "retriever")
    builder.add_edge(START, "assistant")
    #builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="huggingface")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()