Spaces:
Running
Running
File size: 3,523 Bytes
36b054b 2a72ef1 c8166ff 522c77c abfcab6 564fde3 3c76263 ed55fef c68f7bf 564fde3 886f866 4c50283 886f866 ed55fef b9f45bd 90b519b abfcab6 db19c65 4c50283 90b519b f362d95 4c50283 f362d95 4c50283 f362d95 4c50283 f362d95 4c50283 f362d95 4c50283 3aa7fc9 4c50283 3aa7fc9 f362d95 4c50283 3aa7fc9 f362d95 4c50283 886f866 3aa7fc9 4c50283 db19c65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
from churn_analysis import predict
from translator import text_translator_ui
from sentiment import create_sentiment_tab
from financial_analyst import create_financial_tab
from personal_info_identifier import create_personal_info_tab
with gr.Blocks() as app:
with gr.Tab("Translation"):
text_translator_ui()
with gr.Tab("Sentiment Analysis"):
create_sentiment_tab()
with gr.Tab("Text Summarization"):
create_financial_tab()
with gr.Tab("Personal Info Identifier"):
create_personal_info_tab()
with gr.Tab("Churn Analysis"):
gr.Markdown("Customer Churn Prediction")
with gr.Row():
gr.Markdown("This app predicts the likelihood of a customer to leave or stay with the company.")
with gr.Row():
with gr.Column():
input_interface_column_1 = [
gr.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"),
gr.Radio(['Yes', 'No'], label='Do you have Partner?'),
gr.Radio(['No', 'Yes'], label='Do you have any Dependents?'),
gr.Slider(label='Enter length of Tenure in Months', minimum=1, maximum=73, step=1),
gr.Radio(['DSL', 'Fiber optic', 'No Internet'], label='What is your Internet Service?'),
gr.Radio(['No', 'Yes'], label='Do you have Online Security?'),
gr.Radio(['No', 'Yes'], label='Do you have Online Backup?'),
gr.Radio(['No', 'Yes'], label='Do you have Device Protection?')
]
with gr.Column():
input_interface_column_2 = [
gr.Radio(['No', 'Yes'], label='Do you have Tech Support?'),
gr.Radio(['No', 'Yes'], label='Do you have Streaming TV?'),
gr.Radio(['No', 'Yes'], label='Do you have Streaming Movies?'),
gr.Radio(['Month-to-month', 'One year', 'Two year'], label='What is your Contract Type?'),
gr.Radio(['Yes', 'No'], label='Do you prefer Paperless Billing?'),
gr.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label='Which PaymentMethod do you prefer?'),
gr.Slider(label="Enter monthly charges", minimum=18.40, maximum=118.65)
]
input_interface = []
input_interface.extend(input_interface_column_1)
input_interface.extend(input_interface_column_2)
with gr.Row():
predict_btn = gr.Button('Predict')
output_interface = gr.Label(label="Churn Prediction Result")
with gr.Accordion("Open for information on inputs", open=False):
gr.Markdown("""
**Input Descriptions:**
- SeniorCitizen: Whether a customer is a senior citizen or not
- Partner: Whether the customer has a partner or not
- Dependents: Whether the customer has dependents
- Tenure: Number of months the customer has stayed
- InternetService, OnlineSecurity, OnlineBackup, DeviceProtection
- TechSupport, StreamingTV, StreamingMovies
- Contract: Type of contract (Month-to-month, One year, Two year)
- PaperlessBilling
- PaymentMethod
- MonthlyCharges
""")
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
app.launch(share=True) |