Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse filesinitial app commit
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import gc
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from PIL import Image
|
8 |
+
from diffusers import StableDiffusionXLPipeline
|
9 |
+
import open_clip
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from IP_Adapter.ip_adapter import IPAdapterXL
|
12 |
+
from perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
|
13 |
+
import tempfile
|
14 |
+
import uuid
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
# Initialize SDXL pipeline
|
19 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
20 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
21 |
+
base_model_path,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
add_watermarker=False,
|
24 |
+
)
|
25 |
+
|
26 |
+
# Initialize IP-Adapter
|
27 |
+
image_encoder_repo = 'h94/IP-Adapter'
|
28 |
+
image_encoder_subfolder = 'models/image_encoder'
|
29 |
+
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
|
30 |
+
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)
|
31 |
+
|
32 |
+
# Initialize CLIP model
|
33 |
+
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
|
34 |
+
clip_model.to(device)
|
35 |
+
print("Models initialized successfully!")
|
36 |
+
|
37 |
+
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
|
38 |
+
"""Get CLIP image embeddings for a given PIL image"""
|
39 |
+
image = preproc(pil_image)[np.newaxis, :, :, :]
|
40 |
+
with torch.no_grad():
|
41 |
+
embeds = model.encode_image(image.to(dev))
|
42 |
+
return embeds.cpu().detach().numpy()
|
43 |
+
|
44 |
+
def save_temp_image(image):
|
45 |
+
"""Save a PIL image to a temporary file and return the path"""
|
46 |
+
temp_dir = tempfile.gettempdir()
|
47 |
+
filename = f"{uuid.uuid4()}.png"
|
48 |
+
filepath = os.path.join(temp_dir, filename)
|
49 |
+
image.save(filepath)
|
50 |
+
return filepath
|
51 |
+
|
52 |
+
def process_images(
|
53 |
+
base_image,
|
54 |
+
concept_image1, concept_desc1,
|
55 |
+
concept_image2=None, concept_desc2=None,
|
56 |
+
concept_image3=None, concept_desc3=None,
|
57 |
+
rank1=10, rank2=10, rank3=10,
|
58 |
+
prompt=None,
|
59 |
+
scale=1.0,
|
60 |
+
seed=420
|
61 |
+
):
|
62 |
+
"""Process the base image and concept images to generate modified images"""
|
63 |
+
# Process base image
|
64 |
+
base_image_pil = Image.fromarray(base_image).convert("RGB")
|
65 |
+
base_embed = get_image_embeds(base_image_pil)
|
66 |
+
|
67 |
+
# Process concept images
|
68 |
+
concept_images = []
|
69 |
+
concept_descriptions = []
|
70 |
+
|
71 |
+
# Add first concept (required)
|
72 |
+
if concept_image1 is not None:
|
73 |
+
concept_images.append(concept_image1)
|
74 |
+
concept_descriptions.append(concept_desc1 if concept_desc1 else "Concept 1")
|
75 |
+
else:
|
76 |
+
return None, "Please upload at least one concept image"
|
77 |
+
|
78 |
+
# Add second concept (optional)
|
79 |
+
if concept_image2 is not None:
|
80 |
+
concept_images.append(concept_image2)
|
81 |
+
concept_descriptions.append(concept_desc2 if concept_desc2 else "Concept 2")
|
82 |
+
|
83 |
+
# Add third concept (optional)
|
84 |
+
if concept_image3 is not None:
|
85 |
+
concept_images.append(concept_image3)
|
86 |
+
concept_descriptions.append(concept_desc3 if concept_desc3 else "Concept 3")
|
87 |
+
|
88 |
+
# Get all ranks
|
89 |
+
ranks = [rank1]
|
90 |
+
if concept_image2 is not None:
|
91 |
+
ranks.append(rank2)
|
92 |
+
if concept_image3 is not None:
|
93 |
+
ranks.append(rank3)
|
94 |
+
|
95 |
+
concept_embeds = []
|
96 |
+
for img in concept_images:
|
97 |
+
if img is not None:
|
98 |
+
img_pil = Image.fromarray(img).convert("RGB")
|
99 |
+
concept_embeds.append(get_image_embeds(img_pil))
|
100 |
+
|
101 |
+
# Compute projection matrices
|
102 |
+
projection_matrices = []
|
103 |
+
for i, embed in enumerate(concept_embeds):
|
104 |
+
# For a single image, we need to reshape to have the same format as a collection
|
105 |
+
single_embed = embed.reshape(1, *embed.shape)
|
106 |
+
projection_matrix = compute_dataset_embeds_svd(single_embed, ranks[i])
|
107 |
+
projection_matrices.append(projection_matrix)
|
108 |
+
|
109 |
+
# Create projection data structure for the composition
|
110 |
+
projections_data = [
|
111 |
+
{
|
112 |
+
"embed": embed,
|
113 |
+
"projection_matrix": proj_matrix
|
114 |
+
}
|
115 |
+
for embed, proj_matrix in zip(concept_embeds, projection_matrices)
|
116 |
+
]
|
117 |
+
|
118 |
+
# Generate modified images -
|
119 |
+
modified_images = get_modified_images_embeds_composition(
|
120 |
+
base_embed,
|
121 |
+
projections_data,
|
122 |
+
ip_model,
|
123 |
+
prompt=prompt,
|
124 |
+
scale=scale,
|
125 |
+
num_samples=1,
|
126 |
+
seed=seed
|
127 |
+
)
|
128 |
+
|
129 |
+
return modified_images
|
130 |
+
|
131 |
+
def process_and_display(
|
132 |
+
base_image,
|
133 |
+
concept_image1, concept_desc1,
|
134 |
+
concept_image2=None, concept_desc2=None,
|
135 |
+
concept_image3=None, concept_desc3=None,
|
136 |
+
rank1=10, rank2=10, rank3=10,
|
137 |
+
prompt=None, scale=1.0, seed=420
|
138 |
+
):
|
139 |
+
"""Wrapper for process_images that handles UI updates"""
|
140 |
+
if base_image is None:
|
141 |
+
return None, "Please upload a base image"
|
142 |
+
|
143 |
+
if concept_image1 is None:
|
144 |
+
return None, "Please upload at least one concept image"
|
145 |
+
|
146 |
+
modified_images = process_images(
|
147 |
+
base_image,
|
148 |
+
concept_image1, concept_desc1,
|
149 |
+
concept_image2, concept_desc2,
|
150 |
+
concept_image3, concept_desc3,
|
151 |
+
rank1, rank2, rank3,
|
152 |
+
prompt, scale, seed
|
153 |
+
)
|
154 |
+
|
155 |
+
# # Clean up memory
|
156 |
+
# torch.cuda.empty_cache()
|
157 |
+
# gc.collect()
|
158 |
+
|
159 |
+
return modified_images
|
160 |
+
|
161 |
+
with gr.Blocks(title="Image Concept Composition") as demo:
|
162 |
+
gr.Markdown("# Image Concept Composition")
|
163 |
+
gr.Markdown("Upload a base image and 1-3 concept images to create new images that combine these concepts.")
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column():
|
167 |
+
base_image = gr.Image(label="Base Image (Required)", type="numpy")
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column(scale=2):
|
171 |
+
concept_image1 = gr.Image(label="Concept Image 1 (Required)", type="numpy")
|
172 |
+
with gr.Column(scale=1):
|
173 |
+
concept_desc1 = gr.Textbox(label="Concept 1 Description", placeholder="Describe this concept")
|
174 |
+
rank1 = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Rank 1")
|
175 |
+
|
176 |
+
with gr.Row():
|
177 |
+
with gr.Column(scale=2):
|
178 |
+
concept_image2 = gr.Image(label="Concept Image 2 (Optional)", type="numpy")
|
179 |
+
with gr.Column(scale=1):
|
180 |
+
concept_desc2 = gr.Textbox(label="Concept 2 Description", placeholder="Describe this concept")
|
181 |
+
rank2 = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Rank 2")
|
182 |
+
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column(scale=2):
|
185 |
+
concept_image3 = gr.Image(label="Concept Image 3 (Optional)", type="numpy")
|
186 |
+
with gr.Column(scale=1):
|
187 |
+
concept_desc3 = gr.Textbox(label="Concept 3 Description", placeholder="Describe this concept")
|
188 |
+
rank3 = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Rank 3")
|
189 |
+
|
190 |
+
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
|
194 |
+
seed = gr.Number(value=420, label="Seed", precision=0)
|
195 |
+
|
196 |
+
submit_btn = gr.Button("Generate Image")
|
197 |
+
|
198 |
+
with gr.Column():
|
199 |
+
gallery = gr.Gallery(label="Generated Image", show_label=True)
|
200 |
+
status = gr.Markdown("Upload images and click Generate")
|
201 |
+
|
202 |
+
submit_btn.click(
|
203 |
+
fn=process_and_display,
|
204 |
+
inputs=[
|
205 |
+
base_image,
|
206 |
+
concept_image1, concept_desc1,
|
207 |
+
concept_image2, concept_desc2,
|
208 |
+
concept_image3, concept_desc3,
|
209 |
+
rank1, rank2, rank3,
|
210 |
+
prompt, scale, seed
|
211 |
+
],
|
212 |
+
outputs=[gallery, status]
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
demo.launch()
|