Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
def compute_dataset_embeds_svd(all_embeds, rank): | |
# Perform SVD on the combined matrix | |
u, s, vh = np.linalg.svd(all_embeds, full_matrices=False) | |
# Select the top `rank` singular vectors to construct the projection matrix | |
vh = vh[:rank] # Top `rank` right singular vectors | |
projection_matrix = vh.T @ vh # Shape: (feature_dim, feature_dim) | |
return projection_matrix | |
def get_embedding_composition(embed, projections_data): | |
# Initialize the combined embedding with the input embed | |
combined_embeds = embed.copy() | |
for proj_data in projections_data: | |
# Add the combined projection to the result | |
combined_embeds -= embed @ proj_data["projection_matrix"] | |
combined_embeds += proj_data["embed"] @ proj_data["projection_matrix"] | |
return combined_embeds | |
def get_modified_images_embeds_composition(embed, projections_data, ip_model, prompt=None, scale=1.0, num_samples=3, seed=420, num_inference_steps=50): | |
final_embeds = get_embedding_composition(embed, projections_data) | |
clip_embeds = torch.from_numpy(final_embeds) | |
images = ip_model.generate(clip_image_embeds=clip_embeds, prompt=prompt, num_samples=num_samples, num_inference_steps=num_inference_steps, seed=seed, guidance_scale=7.5, scale=scale) | |
return images | |