Spaces:
Running
Running
Upload 3 files
Browse files- app.py +20 -64
- my_logic.py +114 -0
- requirements.txt +6 -1
app.py
CHANGED
@@ -1,64 +1,20 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import google.generativeai as genai
|
3 |
+
from my_logic import answer_question
|
4 |
+
import os
|
5 |
+
|
6 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
7 |
+
gemini_model = genai.GenerativeModel("models/gemini-2.0-pro-exp-02-05")
|
8 |
+
|
9 |
+
def chatbot_interface(user_question):
|
10 |
+
return answer_question(user_question, gemini_model)
|
11 |
+
|
12 |
+
demo = gr.Interface(
|
13 |
+
fn=chatbot_interface,
|
14 |
+
inputs=gr.Textbox(lines=2, placeholder="مثلاً: برای مدار منطقی استاد شایگان چطوره؟", label="❓ سوال شما"),
|
15 |
+
outputs=gr.Textbox(label="📘 پاسخ"),
|
16 |
+
title= "🤖 ربات مشاور تجربیات انتخاب واحد",
|
17 |
+
description="پاسخ بر اساس تجربیات واقعی دانشجویان از کانال @IAUCourseExp"
|
18 |
+
)
|
19 |
+
|
20 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
my_logic.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from collections import defaultdict
|
3 |
+
from difflib import SequenceMatcher
|
4 |
+
|
5 |
+
# NOTE: You must define search_reviews, filter_relevant, metadata, etc.
|
6 |
+
|
7 |
+
def similar(a, b):
|
8 |
+
return SequenceMatcher(None, a, b).ratio()
|
9 |
+
|
10 |
+
def keyword_match_reviews(query, metadata):
|
11 |
+
query = query.strip().replace("؟", "")
|
12 |
+
keywords = set(query.split())
|
13 |
+
results = []
|
14 |
+
for row in metadata:
|
15 |
+
prof = str(row["professor"])
|
16 |
+
course = str(row["course"])
|
17 |
+
for k in keywords:
|
18 |
+
if k in prof or k in course or similar(k, prof) > 0.7 or similar(k, course) > 0.7:
|
19 |
+
results.append(row)
|
20 |
+
break
|
21 |
+
return results
|
22 |
+
|
23 |
+
def relevance_score(row, query):
|
24 |
+
score = 0
|
25 |
+
if row["professor"] in query:
|
26 |
+
score += 2
|
27 |
+
if row["course"] in query:
|
28 |
+
score += 2
|
29 |
+
if row["professor"].split()[0] in query:
|
30 |
+
score += 1
|
31 |
+
if row["course"].split()[0] in query:
|
32 |
+
score += 1
|
33 |
+
return score
|
34 |
+
|
35 |
+
def build_strict_context(reviews, user_question):
|
36 |
+
prof_match_scores = defaultdict(int)
|
37 |
+
course_match_scores = defaultdict(int)
|
38 |
+
for r in reviews:
|
39 |
+
prof_sim = similar(user_question, r["professor"])
|
40 |
+
course_sim = similar(user_question, r["course"])
|
41 |
+
if prof_sim > 0.6:
|
42 |
+
prof_match_scores[r["professor"]] += prof_sim
|
43 |
+
if course_sim > 0.6:
|
44 |
+
course_match_scores[r["course"]] += course_sim
|
45 |
+
|
46 |
+
best_prof = max(prof_match_scores, key=prof_match_scores.get, default="")
|
47 |
+
best_course = max(course_match_scores, key=course_match_scores.get, default="")
|
48 |
+
|
49 |
+
if best_prof and best_course:
|
50 |
+
filtered = [r for r in reviews if similar(best_prof, r["professor"]) > 0.85 and similar(best_course, r["course"]) > 0.85]
|
51 |
+
elif best_course:
|
52 |
+
filtered = [r for r in reviews if similar(best_course, r["course"]) > 0.85]
|
53 |
+
elif best_prof:
|
54 |
+
filtered = [r for r in reviews if similar(best_prof, r["professor"]) > 0.85]
|
55 |
+
else:
|
56 |
+
filtered = reviews
|
57 |
+
|
58 |
+
result = f"👨🏫 استاد: {best_prof or '[نامشخص]'} — 📚 درس: {best_course or '[نامشخص]'}\\n💬 نظرات:\\n"
|
59 |
+
for i, r in enumerate(filtered, 1):
|
60 |
+
result += f"{i}. {r['comment'].strip()}\\n🔗 لینک: {r['link']}\\n\\n"
|
61 |
+
return result
|
62 |
+
|
63 |
+
def truncate_reviews_to_fit(reviews, max_chars=127000):
|
64 |
+
total = 0
|
65 |
+
final = []
|
66 |
+
for r in reviews:
|
67 |
+
size = len(r["comment"])
|
68 |
+
if total + size > max_chars:
|
69 |
+
break
|
70 |
+
final.append(r)
|
71 |
+
total += size
|
72 |
+
return final
|
73 |
+
|
74 |
+
def answer_question(user_question, model):
|
75 |
+
print(f"\\n🧠 Starting debug for question: {user_question}")
|
76 |
+
retrieved = search_reviews(user_question, top_k=100)
|
77 |
+
print(f"🔍 FAISS returned {len(retrieved)} raw rows")
|
78 |
+
retrieved = filter_relevant(retrieved, user_question)
|
79 |
+
print(f"✅ After filter_relevant(): {len(retrieved)} rows")
|
80 |
+
keyword_hits = keyword_match_reviews(user_question, metadata)
|
81 |
+
print(f"🔠 Keyword hits found: {len(keyword_hits)}")
|
82 |
+
existing_links = set(r["link"] for r in retrieved)
|
83 |
+
added = 0
|
84 |
+
for r in keyword_hits:
|
85 |
+
if r["link"] not in existing_links:
|
86 |
+
retrieved.append(r)
|
87 |
+
added += 1
|
88 |
+
print(f"➕ Added {added} unique fallback keyword rows")
|
89 |
+
print(f"📊 Total before truncation: {len(retrieved)}")
|
90 |
+
if not retrieved:
|
91 |
+
return "❌ هیچ تجربهای در مورد سوال شما در دادههای کانال یافت نشد."
|
92 |
+
retrieved.sort(key=lambda r: relevance_score(r, user_question), reverse=True)
|
93 |
+
retrieved = truncate_reviews_to_fit(retrieved)
|
94 |
+
print(f"✂️ After truncation: {len(retrieved)} rows")
|
95 |
+
context = build_strict_context(retrieved, user_question)
|
96 |
+
print("📝 Sample context sent to Gemini:\\n", context[:1000], "\\n...")
|
97 |
+
prompt = f\"\"\"شما یک دستیار هوشمند انتخاب واحد هستید که فقط و فقط بر اساس نظرات واقعی دانشجویان از کانال @IAUCourseExp پاسخ میدهید.
|
98 |
+
❗ قوانین مهم:
|
99 |
+
- فقط از دادههای همین نظرات استفاده کن.
|
100 |
+
- اگر هیچ نظری نیست، بگو: «هیچ تجربهای دربارهٔ این مورد در کانال ثبت نشده است.»
|
101 |
+
- سوالات ممکنه درباره یک استاد، درس، مقایسه، یا معرفی بهترین/بدترینها باشه.
|
102 |
+
- همه نظرات رو تحلیل کن. لینک هر کدوم رو هم بیار.
|
103 |
+
- در پایان جمعبندی کن و بنویس:
|
104 |
+
📊 این پاسخ بر اساس بررسی {len(retrieved)} نظر دانشجویی نوشته شده است.
|
105 |
+
🔎 سوال دانشجو:
|
106 |
+
{user_question}
|
107 |
+
|
108 |
+
📄 نظرات دانشجویان:
|
109 |
+
{context}
|
110 |
+
|
111 |
+
📘 پاسخ نهایی:
|
112 |
+
\"\"\"
|
113 |
+
response = model.generate_content(prompt)
|
114 |
+
return response.text
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
gradio
|
4 |
+
google-generativeai
|
5 |
+
faiss-cpu
|
6 |
+
sentence-transformers
|