Spaces:
Running
Running
Upload 3 files
Browse files- .gitattributes +1 -0
- iau_metadata.json +0 -0
- iau_reviews_index.faiss +3 -0
- my_logic.py +145 -10
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
iau_reviews_index.faiss filter=lfs diff=lfs merge=lfs -text
|
iau_metadata.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
iau_reviews_index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf65d8eea4185c36a23cf1fcc39661a8c0f918633d444395103529424777b93
|
3 |
+
size 1276461
|
my_logic.py
CHANGED
@@ -1,16 +1,115 @@
|
|
1 |
import pandas as pd
|
2 |
from collections import defaultdict
|
3 |
from difflib import SequenceMatcher
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Load reviews CSV
|
6 |
-
metadata = pd.read_csv("cleaned_iau_reviews.csv").to_dict(orient="records")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def similar(a, b):
|
9 |
return SequenceMatcher(None, a, b).ratio()
|
10 |
|
|
|
11 |
def keyword_match_reviews(query, metadata):
|
12 |
query = query.strip().replace("؟", "")
|
13 |
keywords = set(query.split())
|
|
|
14 |
results = []
|
15 |
for row in metadata:
|
16 |
prof = str(row["professor"])
|
@@ -21,6 +120,7 @@ def keyword_match_reviews(query, metadata):
|
|
21 |
break
|
22 |
return results
|
23 |
|
|
|
24 |
def relevance_score(row, query):
|
25 |
score = 0
|
26 |
if row["professor"] in query:
|
@@ -33,9 +133,11 @@ def relevance_score(row, query):
|
|
33 |
score += 1
|
34 |
return score
|
35 |
|
|
|
36 |
def build_strict_context(reviews, user_question):
|
37 |
prof_match_scores = defaultdict(int)
|
38 |
course_match_scores = defaultdict(int)
|
|
|
39 |
for r in reviews:
|
40 |
prof_sim = similar(user_question, r["professor"])
|
41 |
course_sim = similar(user_question, r["course"])
|
@@ -48,7 +150,10 @@ def build_strict_context(reviews, user_question):
|
|
48 |
best_course = max(course_match_scores, key=course_match_scores.get, default="")
|
49 |
|
50 |
if best_prof and best_course:
|
51 |
-
filtered = [
|
|
|
|
|
|
|
52 |
elif best_course:
|
53 |
filtered = [r for r in reviews if similar(best_course, r["course"]) > 0.85]
|
54 |
elif best_prof:
|
@@ -56,11 +161,13 @@ def build_strict_context(reviews, user_question):
|
|
56 |
else:
|
57 |
filtered = reviews
|
58 |
|
|
|
59 |
result = f"👨🏫 استاد: {best_prof or '[نامشخص]'} — 📚 درس: {best_course or '[نامشخص]'}\n💬 نظرات:\n"
|
60 |
for i, r in enumerate(filtered, 1):
|
61 |
result += f"{i}. {r['comment'].strip()}\n🔗 لینک: {r['link']}\n\n"
|
62 |
return result
|
63 |
|
|
|
64 |
def truncate_reviews_to_fit(reviews, max_chars=127000):
|
65 |
total = 0
|
66 |
final = []
|
@@ -72,17 +179,39 @@ def truncate_reviews_to_fit(reviews, max_chars=127000):
|
|
72 |
total += size
|
73 |
return final
|
74 |
|
75 |
-
|
|
|
76 |
print(f"\n🧠 Starting debug for question: {user_question}")
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if not retrieved:
|
79 |
return "❌ هیچ تجربهای در مورد سوال شما در دادههای کانال یافت نشد."
|
80 |
|
81 |
retrieved.sort(key=lambda r: relevance_score(r, user_question), reverse=True)
|
82 |
retrieved = truncate_reviews_to_fit(retrieved)
|
|
|
|
|
83 |
context = build_strict_context(retrieved, user_question)
|
|
|
84 |
|
85 |
-
prompt = f"""شما یک دستیار هوشمند انتخاب واحد هستید که فقط و فقط بر اساس نظرات واقعی دانشجویان از کانال @IAUCourseExp پاسخ میدهید.
|
86 |
|
87 |
❗ قوانین مهم:
|
88 |
- فقط از دادههای همین نظرات استفاده کن. هیچ اطلاعات اضافی، حدسی یا اینترنتی استفاده نکن.
|
@@ -92,18 +221,24 @@ def answer_question(user_question, model):
|
|
92 |
• مقایسه چند استاد برای یک درس
|
93 |
• معرفی بهترین یا بدترین استادهای یک درس
|
94 |
• تحلیل نظر کلی دانشجویان درمورد یک درس خاص
|
95 |
-
|
96 |
-
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
🔎 سوال دانشجو:
|
99 |
{user_question}
|
100 |
|
101 |
-
📄 نظرات
|
102 |
{context}
|
103 |
|
104 |
📘 پاسخ نهایی:
|
105 |
-
📊 این پاسخ بر اساس بررسی {len(retrieved)} نظر دانشجویی نوشته شده است.
|
106 |
"""
|
107 |
|
108 |
-
|
|
|
|
|
|
|
109 |
return response.text
|
|
|
1 |
import pandas as pd
|
2 |
from collections import defaultdict
|
3 |
from difflib import SequenceMatcher
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import json
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from transformers import AutoTokenizer, AutoModel
|
10 |
|
11 |
+
|
12 |
+
# Load CSV
|
13 |
+
|
14 |
+
# Load FAISS index and metadata
|
15 |
+
index = faiss.read_index("iau_reviews_index.faiss")
|
16 |
+
with open("iau_metadata.json", "r", encoding="utf-8") as f:
|
17 |
+
metadata = json.load(f)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
model = SentenceTransformer("HooshvareLab/bert-fa-zwnj-base")
|
22 |
# Load reviews CSV
|
|
|
23 |
|
24 |
+
|
25 |
+
# Load Persian tokenizer and model
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-zwnj-base")
|
27 |
+
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-zwnj-base").eval()
|
28 |
+
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
model.to(device)
|
31 |
+
|
32 |
+
# Load FAISS index and metadata
|
33 |
+
index = faiss.read_index("iau_reviews_index.faiss")
|
34 |
+
with open("iau_metadata.json", "r", encoding="utf-8") as f:
|
35 |
+
metadata = json.load(f)
|
36 |
+
|
37 |
+
def mean_pooling(model_output, attention_mask):
|
38 |
+
token_embeddings = model_output[0]
|
39 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size())
|
40 |
+
return (token_embeddings * input_mask_expanded).sum(1) / input_mask_expanded.sum(1)
|
41 |
+
|
42 |
+
def encode_texts(texts, batch_size=16):
|
43 |
+
embeddings = []
|
44 |
+
with torch.no_grad():
|
45 |
+
for i in range(0, len(texts), batch_size):
|
46 |
+
batch = texts[i:i+batch_size]
|
47 |
+
encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors='pt', max_length=128).to(device)
|
48 |
+
model_output = model(**encoded_input)
|
49 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
50 |
+
sentence_embeddings = sentence_embeddings.cpu().numpy()
|
51 |
+
embeddings.append(sentence_embeddings)
|
52 |
+
return np.vstack(embeddings)
|
53 |
+
|
54 |
+
def search_reviews(query, top_k=5):
|
55 |
+
|
56 |
+
keywords = query.strip().split()
|
57 |
+
|
58 |
+
candidate_rows = [
|
59 |
+
r for r in metadata
|
60 |
+
if any(kw in r["professor"] or kw in r["course"] for kw in keywords)
|
61 |
+
]
|
62 |
+
|
63 |
+
if not candidate_rows:
|
64 |
+
return []
|
65 |
+
|
66 |
+
texts = [r["course"] + " " + r["professor"] + " " + r["comment"] for r in candidate_rows]
|
67 |
+
vectors = encode_texts(texts)
|
68 |
+
vectors = vectors / np.linalg.norm(vectors, axis=1, keepdims=True)
|
69 |
+
|
70 |
+
query_vec = encode_texts([query])
|
71 |
+
query_vec = query_vec / np.linalg.norm(query_vec, axis=1, keepdims=True)
|
72 |
+
|
73 |
+
|
74 |
+
local_index = faiss.IndexFlatIP(vectors.shape[1])
|
75 |
+
local_index.add(vectors)
|
76 |
+
|
77 |
+
D, I = local_index.search(query_vec, min(top_k, len(candidate_rows)))
|
78 |
+
|
79 |
+
return [candidate_rows[i] for i in I[0]]
|
80 |
+
|
81 |
+
|
82 |
+
def filter_relevant(results, query):
|
83 |
+
query = query.replace("؟", "").strip()
|
84 |
+
query_tokens = set(query.split())
|
85 |
+
|
86 |
+
def is_strict_match(row):
|
87 |
+
# Normalize and tokenize professor and course
|
88 |
+
prof_tokens = set(str(row["professor"]).strip().split())
|
89 |
+
course_tokens = set(str(row["course"]).strip().split())
|
90 |
+
|
91 |
+
# Match only if full token overlap exists (not substrings)
|
92 |
+
match_prof = prof_tokens & query_tokens
|
93 |
+
match_course = course_tokens & query_tokens
|
94 |
+
|
95 |
+
return bool(match_prof or match_course)
|
96 |
+
|
97 |
+
# Return all matching results
|
98 |
+
return [r for r in results if is_strict_match(r)]
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
# ---- Fuzzy similarity score ----
|
105 |
def similar(a, b):
|
106 |
return SequenceMatcher(None, a, b).ratio()
|
107 |
|
108 |
+
# ---- Enhanced keyword fallback ----
|
109 |
def keyword_match_reviews(query, metadata):
|
110 |
query = query.strip().replace("؟", "")
|
111 |
keywords = set(query.split())
|
112 |
+
|
113 |
results = []
|
114 |
for row in metadata:
|
115 |
prof = str(row["professor"])
|
|
|
120 |
break
|
121 |
return results
|
122 |
|
123 |
+
# ---- Sort by relevance ----
|
124 |
def relevance_score(row, query):
|
125 |
score = 0
|
126 |
if row["professor"] in query:
|
|
|
133 |
score += 1
|
134 |
return score
|
135 |
|
136 |
+
# ---- Strict context builder (best prof+course only) ----
|
137 |
def build_strict_context(reviews, user_question):
|
138 |
prof_match_scores = defaultdict(int)
|
139 |
course_match_scores = defaultdict(int)
|
140 |
+
|
141 |
for r in reviews:
|
142 |
prof_sim = similar(user_question, r["professor"])
|
143 |
course_sim = similar(user_question, r["course"])
|
|
|
150 |
best_course = max(course_match_scores, key=course_match_scores.get, default="")
|
151 |
|
152 |
if best_prof and best_course:
|
153 |
+
filtered = [
|
154 |
+
r for r in reviews
|
155 |
+
if similar(best_prof, r["professor"]) > 0.85 and similar(best_course, r["course"]) > 0.85
|
156 |
+
]
|
157 |
elif best_course:
|
158 |
filtered = [r for r in reviews if similar(best_course, r["course"]) > 0.85]
|
159 |
elif best_prof:
|
|
|
161 |
else:
|
162 |
filtered = reviews
|
163 |
|
164 |
+
|
165 |
result = f"👨🏫 استاد: {best_prof or '[نامشخص]'} — 📚 درس: {best_course or '[نامشخص]'}\n💬 نظرات:\n"
|
166 |
for i, r in enumerate(filtered, 1):
|
167 |
result += f"{i}. {r['comment'].strip()}\n🔗 لینک: {r['link']}\n\n"
|
168 |
return result
|
169 |
|
170 |
+
# ---- Truncation helper ----
|
171 |
def truncate_reviews_to_fit(reviews, max_chars=127000):
|
172 |
total = 0
|
173 |
final = []
|
|
|
179 |
total += size
|
180 |
return final
|
181 |
|
182 |
+
# ---- Main answer function ----
|
183 |
+
def answer_question(user_question):
|
184 |
print(f"\n🧠 Starting debug for question: {user_question}")
|
185 |
+
|
186 |
+
retrieved = search_reviews(user_question, top_k=100)
|
187 |
+
print(f"🔍 FAISS returned {len(retrieved)} raw rows")
|
188 |
+
|
189 |
+
retrieved = filter_relevant(retrieved, user_question)
|
190 |
+
print(f"✅ After filter_relevant(): {len(retrieved)} rows")
|
191 |
+
|
192 |
+
keyword_hits = keyword_match_reviews(user_question, metadata)
|
193 |
+
print(f"🔠 Keyword hits found: {len(keyword_hits)}")
|
194 |
+
|
195 |
+
existing_links = set(r["link"] for r in retrieved)
|
196 |
+
added = 0
|
197 |
+
for r in keyword_hits:
|
198 |
+
if r["link"] not in existing_links:
|
199 |
+
retrieved.append(r)
|
200 |
+
added += 1
|
201 |
+
print(f"➕ Added {added} unique fallback keyword rows")
|
202 |
+
print(f"📊 Total before truncation: {len(retrieved)}")
|
203 |
+
|
204 |
if not retrieved:
|
205 |
return "❌ هیچ تجربهای در مورد سوال شما در دادههای کانال یافت نشد."
|
206 |
|
207 |
retrieved.sort(key=lambda r: relevance_score(r, user_question), reverse=True)
|
208 |
retrieved = truncate_reviews_to_fit(retrieved)
|
209 |
+
print(f"✂️ After truncation: {len(retrieved)} rows")
|
210 |
+
|
211 |
context = build_strict_context(retrieved, user_question)
|
212 |
+
print("📝 Sample context sent to GPT:\n", context[:100000], "\n...")
|
213 |
|
214 |
+
prompt = f"""شما یک دستیار هوشمند انتخاب واحد هستید که فقط و فقط بر اساس نظرات واقعی دانشجویان از کانال @IAUCourseExp پاسخ میدهید. کار شما کمک به دانشجویان برای انتخاب استاد و درس، بر اساس تجربیات ثبتشده در این کانال است.
|
215 |
|
216 |
❗ قوانین مهم:
|
217 |
- فقط از دادههای همین نظرات استفاده کن. هیچ اطلاعات اضافی، حدسی یا اینترنتی استفاده نکن.
|
|
|
221 |
• مقایسه چند استاد برای یک درس
|
222 |
• معرفی بهترین یا بدترین استادهای یک درس
|
223 |
• تحلیل نظر کلی دانشجویان درمورد یک درس خاص
|
224 |
+
بنابراین آماده باش که با توجه به دادهها به هر نوع سوال، دقیق و قابل اعتماد پاسخ بدهی.
|
225 |
+
- همهی نظرات مربوط به سوال را بررسی کن (نه فقط یکی یا دو تا) و بهصورت فهرستوار یا خلاصهشده تحلیلشان کن.
|
226 |
+
- برای هر نظر، لینک تلگرام مربوطه را نیز حتماً ذکر کن.
|
227 |
+
- در پایان پاسخ، نتیجهگیری نهایی خود را بنویس: آیا این استاد برای این درس توصیه میشود یا نه — فقط بر اساس همین نظرات.
|
228 |
+
- در انتها حتماً بنویس:
|
229 |
+
📊 این پاسخ بر اساس بررسی {len(retrieved)} نظر دانشجویی نوشته شده است.
|
230 |
|
231 |
🔎 سوال دانشجو:
|
232 |
{user_question}
|
233 |
|
234 |
+
📄 نظرات دانشجویان (برگرفته از کانال تجربیات انتخاب واحد):
|
235 |
{context}
|
236 |
|
237 |
📘 پاسخ نهایی:
|
|
|
238 |
"""
|
239 |
|
240 |
+
|
241 |
+
# NEW (Gemini)
|
242 |
+
|
243 |
+
response = gemini_model.generate_content(prompt)
|
244 |
return response.text
|