File size: 6,211 Bytes
9457397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0adaf09
9457397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0adaf09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import asyncio
from websockets import connect, Data, ClientConnection
from dotenv import load_dotenv
import json
import os 
import threading
import numpy as np
import base64
import soundfile as sf
import io
from pydub import AudioSegment
import time
import uuid

class LogColors:
    OK = '\033[94m'
    SUCCESS = '\033[92m'
    WARNING = '\033[93m'
    ERROR = '\033[91m'
    ENDC = '\033[0m'

load_dotenv() 
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
if not OPENAI_API_KEY:
    raise ValueError("OPENAI_API_KEY environment variable must be set")

WEBSOCKET_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
WEBSOCKET_HEADERS = {
    "Authorization": "Bearer " + OPENAI_API_KEY,
    "OpenAI-Beta": "realtime=v1"
}

transcription = ""
css = """
"""

connections = {}

class WebSocketClient:
    def __init__(self, uri: str, headers: dict, client_id: str):
        self.uri = uri
        self.headers = headers
        self.websocket: ClientConnection = None
        self.queue = asyncio.Queue(maxsize=10)
        self.loop = None
        self.client_id = client_id

    async def connect(self):
        try:
            self.websocket = await connect(self.uri, additional_headers=self.headers)
            print(f"{LogColors.SUCCESS}Connected to OpenAI WebSocket{LogColors.ENDC}\n")

            # Send session settings to OpenAI
            with open("openai_transcription_settings.json", "r") as f:
                settings = f.read()
                await self.websocket.send(settings)

            await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
        except Exception as e:
            print(f"{LogColors.ERROR}WebSocket Connection Error: {e}{LogColors.ENDC}")

    def run(self):
        self.loop = asyncio.new_event_loop()
        asyncio.set_event_loop(self.loop)
        self.loop.run_until_complete(self.connect())

    def process_websocket_message(self, message: Data):
        global transcription
        message_object = json.loads(message)
        if message_object["type"] != "error":
            print(f"{LogColors.OK}Received message: {LogColors.ENDC} {message}")
            if message_object["type"] == "conversation.item.input_audio_transcription.delta":
                delta = message_object["delta"]
                transcription += delta
            elif message_object["type"] == "conversation.item.input_audio_transcription.completed":
                transcription += ' ' if len(transcription) and transcription[-1] != ' ' else ''
        else:
            print(f"{LogColors.ERROR}Error: {message}{LogColors.ENDC}")

    async def send_audio_chunks(self):
        while True:
            audio_data = await self.queue.get()
            sample_rate, audio_array = audio_data
            if self.websocket:
                # Convert to mono if stereo
                if audio_array.ndim > 1:
                    audio_array = audio_array.mean(axis=1)

                # Convert to float32 and normalize
                audio_array = audio_array.astype(np.float32)
                audio_array /= np.max(np.abs(audio_array)) if np.max(np.abs(audio_array)) > 0 else 1.0

                # Convert to 16-bit PCM
                audio_array_int16 = (audio_array * 32767).astype(np.int16)
                
                audio_buffer = io.BytesIO()
                sf.write(audio_buffer, audio_array_int16, sample_rate, format='WAV', subtype='PCM_16')
                audio_buffer.seek(0) 
                audio_segment = AudioSegment.from_file(audio_buffer, format="wav")
                resampled_audio = audio_segment.set_frame_rate(24000)
                
                output_buffer = io.BytesIO()
                resampled_audio.export(output_buffer, format="wav")
                output_buffer.seek(0)
                base64_audio = base64.b64encode(output_buffer.read()).decode("utf-8")

                await self.websocket.send(json.dumps({"type": "input_audio_buffer.append", "audio": base64_audio}))
                print(f"{LogColors.OK}Sent audio chunk{LogColors.ENDC}")

    async def receive_messages(self):
        async for message in self.websocket:
            self.process_websocket_message(message)

    def enqueue_audio_chunk(self, sample_rate: int, chunk_array: np.ndarray):
        if not self.queue.full():
            asyncio.run_coroutine_threadsafe(self.queue.put((sample_rate, chunk_array)), self.loop)
        else:
            print(f"{LogColors.WARNING}Queue is full, dropping audio chunk{LogColors.ENDC}")

    async def close(self):
        if self.websocket:
            await self.websocket.close()
            connections.pop(self.client_id)
        print(f"{LogColors.WARNING}WebSocket connection closed{LogColors.ENDC}")


def send_audio_chunk(new_chunk: gr.Audio, client_id: str):
    if client_id not in connections:
        return "Connection is being established, please try again in a few seconds."
    sr, y = new_chunk
    connections[client_id].enqueue_audio_chunk(sr, y)
    return transcription

def create_new_websocket_connection():
    client_id = str(uuid.uuid4())
    connections[client_id] = WebSocketClient(WEBSOCKET_URI, WEBSOCKET_HEADERS, client_id)
    threading.Thread(target=connections[client_id].run, daemon=True).start()
    return client_id

if __name__ == "__main__":
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"# Realtime transcription demo")
        with gr.Row():
            with gr.Column():
                output_textbox = gr.Textbox(label="Transcription", value="", lines=7, interactive=False, autoscroll=True)
        with gr.Row():    
            with gr.Column(scale=5):
                audio_input = gr.Audio(streaming=True, format="wav")
            with gr.Column():
                clear_button = gr.Button("Clear")

        client_id = gr.State()
        state = gr.State()
        clear_button.click(lambda: None, outputs=[state]).then(lambda: "", outputs=[output_textbox])
        audio_input.stream(send_audio_chunk, [audio_input, client_id], [output_textbox], stream_every=0.5, concurrency_limit=None)
        demo.load(create_new_websocket_connection, outputs=[client_id])

    demo.launch()