IAMTFRMZA's picture
Create app.py
d439419 verified
raw
history blame
5.01 kB
import gradio as gr
import os
import json
import uuid
import threading
import time
import re
from openai import OpenAI
from realtime_transcriber import WebSocketClient, connections, WEBSOCKET_URI, WEBSOCKET_HEADERS
# ------------------ Load API Key ------------------
from dotenv import load_dotenv
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
raise ValueError("Missing OPENAI_API_KEY or ASSISTANT_ID in environment variables")
client = OpenAI(api_key=OPENAI_API_KEY)
# ------------------ Chat Logic ------------------
session_threads = {}
session_messages = {}
def reset_session():
session_id = str(uuid.uuid4())
thread = client.beta.threads.create()
session_threads[session_id] = thread.id
session_messages[session_id] = []
return session_id
def process_chat(message, history, session_id):
thread_id = session_threads.get(session_id)
if not thread_id:
thread_id = client.beta.threads.create().id
session_threads[session_id] = thread_id
# Store user message
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=message
)
# Run assistant
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
while True:
run_status = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run_status.status == "completed":
break
time.sleep(1)
# Retrieve assistant message
messages = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(messages.data):
if msg.role == "assistant":
assistant_response = msg.content[0].text.value
break
else:
assistant_response = "⚠️ Assistant did not respond."
# Detect image if present
image_url = None
match = re.search(r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png', assistant_response)
if match:
image_url = match.group(0)
return assistant_response, image_url
# ------------------ Transcription Logic ------------------
def create_websocket_client():
client_id = str(uuid.uuid4())
connections[client_id] = WebSocketClient(WEBSOCKET_URI, WEBSOCKET_HEADERS, client_id)
threading.Thread(target=connections[client_id].run, daemon=True).start()
return client_id
def clear_transcript(client_id):
if client_id in connections:
connections[client_id].transcript = ""
return ""
def send_audio_chunk(audio, client_id):
if client_id not in connections:
return "Initializing connection..."
sr, y = audio
connections[client_id].enqueue_audio_chunk(sr, y)
return connections[client_id].transcript
# ------------------ Gradio Interface ------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 Document AI + πŸŽ™οΈ Voice Assistant")
session_id = gr.State(value=reset_session())
client_id = gr.State()
# ---------- Section 1: Document Image Display ----------
with gr.Row():
image_display = gr.Image(label="πŸ“„ Document Page (auto-extracted if available)", interactive=False, visible=False)
# ---------- Section 2: Chat Interface ----------
with gr.Row():
chatbot = gr.ChatInterface(
fn=lambda message, history, session_id: (
process_chat(message, history, session_id)[0],
process_chat(message, history, session_id)[1],
),
additional_inputs=[session_id],
render_markdown=True,
examples=["What does clause 3.2 mean?", "Summarize the timeline from the image."],
title="πŸ’¬ Document Assistant",
retry_btn="πŸ” Retry",
undo_btn="↩️ Undo",
clear_btn="πŸ—‘οΈ Clear",
)
# Link image preview if extracted
def update_image_display(message, history, session_id):
_, image_url = process_chat(message, history, session_id)
return gr.update(value=image_url, visible=bool(image_url))
chatbot.chatbot.change(fn=update_image_display, inputs=[chatbot.input, chatbot.chatbot, session_id], outputs=[image_display])
# ---------- Section 3: Voice Transcription ----------
gr.Markdown("## πŸŽ™οΈ Realtime Voice Transcription")
with gr.Row():
transcript_box = gr.Textbox(label="Live Transcript", lines=7, interactive=False, autoscroll=True)
with gr.Row():
mic_input = gr.Audio(source="microphone", streaming=True)
clear_button = gr.Button("Clear Transcript")
mic_input.stream(fn=send_audio_chunk, inputs=[mic_input, client_id], outputs=transcript_box)
clear_button.click(fn=clear_transcript, inputs=[client_id], outputs=transcript_box)
demo.load(fn=create_websocket_client, outputs=client_id)
demo.launch()