File size: 3,904 Bytes
d439419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95695d7
d439419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4889b6
d439419
 
95695d7
d439419
84aaf41
 
 
 
ce51cd7
d439419
 
e4889b6
d439419
 
 
 
 
 
95695d7
d439419
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import os
import json
import uuid
import threading
import time
import re

from openai import OpenAI
from realtime_transcriber import WebSocketClient, connections, WEBSOCKET_URI, WEBSOCKET_HEADERS

# ------------------ Load API Key ------------------
from dotenv import load_dotenv
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")

if not OPENAI_API_KEY or not ASSISTANT_ID:
    raise ValueError("Missing OPENAI_API_KEY or ASSISTANT_ID in environment variables")

client = OpenAI(api_key=OPENAI_API_KEY)

# ------------------ Chat Logic ------------------
session_threads = {}

def reset_session():
    session_id = str(uuid.uuid4())
    thread = client.beta.threads.create()
    session_threads[session_id] = thread.id
    return session_id

def process_chat(message, history, session_id):
    thread_id = session_threads.get(session_id)
    if not thread_id:
        thread_id = client.beta.threads.create().id
        session_threads[session_id] = thread_id

    client.beta.threads.messages.create(
        thread_id=thread_id,
        role="user",
        content=message
    )

    run = client.beta.threads.runs.create(
        thread_id=thread_id,
        assistant_id=ASSISTANT_ID
    )

    while True:
        run_status = client.beta.threads.runs.retrieve(
            thread_id=thread_id,
            run_id=run.id
        )
        if run_status.status == "completed":
            break
        time.sleep(1)

    messages = client.beta.threads.messages.list(thread_id=thread_id)
    for msg in reversed(messages.data):
        if msg.role == "assistant":
            assistant_response = msg.content[0].text.value
            break
    else:
        assistant_response = "⚠️ Assistant did not respond."

    return assistant_response  # βœ… only returning text now

# ------------------ Transcription Logic ------------------
def create_websocket_client():
    client_id = str(uuid.uuid4())
    connections[client_id] = WebSocketClient(WEBSOCKET_URI, WEBSOCKET_HEADERS, client_id)
    threading.Thread(target=connections[client_id].run, daemon=True).start()
    return client_id

def clear_transcript(client_id):
    if client_id in connections:
        connections[client_id].transcript = ""
    return ""

def send_audio_chunk(audio, client_id):
    if client_id not in connections:
        return "Initializing connection..."
    sr, y = audio
    connections[client_id].enqueue_audio_chunk(sr, y)
    return connections[client_id].transcript

# ------------------ Gradio Interface ------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🧠 Document AI + πŸŽ™οΈ Voice Assistant")

    session_id = gr.State(value=reset_session())
    client_id = gr.State()

    # ---------- Section 1: Chat Interface ----------
    with gr.Row():
        chatbot = gr.ChatInterface(
            fn=lambda message, history, session_id: process_chat(message, history, session_id),
            additional_inputs=[session_id],
            examples=[
                ["What does clause 3.2 mean?"],
                ["Summarize the timeline from the image."]
            ],
            title="πŸ’¬ Document Assistant"
        )

    # ---------- Section 2: Voice Transcription ----------
    gr.Markdown("## πŸŽ™οΈ Realtime Voice Transcription")

    with gr.Row():
        transcript_box = gr.Textbox(label="Live Transcript", lines=7, interactive=False, autoscroll=True)
    
    with gr.Row():
        mic_input = gr.Audio(streaming=True)  # βœ… fixed for Hugging Face compatibility
        clear_button = gr.Button("Clear Transcript")

    mic_input.stream(fn=send_audio_chunk, inputs=[mic_input, client_id], outputs=transcript_box)
    clear_button.click(fn=clear_transcript, inputs=[client_id], outputs=transcript_box)
    demo.load(fn=create_websocket_client, outputs=client_id)

demo.launch()