documentaitest / app.py
IAMTFRMZA's picture
Update app.py
b0a4149 verified
raw
history blame
5.75 kB
import streamlit as st
import os
import time
import re
import json
import requests
from PIL import Image
from openai import OpenAI
# ------------------ App Configuration ------------------
st.set_page_config(page_title="Document AI Assistant", layout="wide")
st.title("πŸ“„ Document AI Assistant")
st.caption("Chat with an AI Assistant on your medical/pathology documents")
# ------------------ Load API Key and Assistant ID ------------------
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ASSISTANT_ID = os.environ.get("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
st.error("Missing secrets. Please ensure both OPENAI_API_KEY and ASSISTANT_ID are set in your Hugging Face Space secrets.")
st.stop()
client = OpenAI(api_key=OPENAI_API_KEY)
# ------------------ Session State Initialization ------------------
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread_id" not in st.session_state:
st.session_state.thread_id = None
if "image_url" not in st.session_state:
st.session_state.image_url = None
if "image_updated" not in st.session_state:
st.session_state.image_updated = False
# ------------------ Sidebar Controls ------------------
st.sidebar.header("πŸ”§ Settings")
if st.sidebar.button("πŸ”„ Clear Chat"):
st.session_state.messages = []
st.session_state.thread_id = None
st.session_state.image_url = None
st.session_state.image_updated = False
st.rerun()
show_image = st.sidebar.checkbox("πŸ“– Show Document Image", value=True)
# ------------------ Load Structured Summary/FAQ ------------------
with open("51940670-Manual-of-Surgical-Pathology-Third-Edition_1_structured_output.json", "r") as f:
structured_data = json.load(f) # This is a list of dicts, not a dict
# ------------------ Three-Column Layout ------------------
left, center, right = st.columns([1, 2, 1])
# ------------------ Left Column: Document Image ------------------
with left:
st.subheader("πŸ“„ Document Image")
if show_image and st.session_state.image_url:
try:
image = Image.open(requests.get(st.session_state.image_url, stream=True).raw)
st.image(image, caption="πŸ“‘ Extracted Page", use_container_width=True)
st.session_state.image_updated = False
except Exception as e:
st.warning("⚠️ Could not load image.")
# ------------------ Center Column: Chat UI ------------------
with center:
st.subheader("πŸ’¬ Document AI Assistant")
for message in st.session_state.messages:
role, content = message["role"], message["content"]
st.chat_message(role).write(content)
if prompt := st.chat_input("Type your question about the document..."):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
try:
if st.session_state.thread_id is None:
thread = client.beta.threads.create()
st.session_state.thread_id = thread.id
thread_id = st.session_state.thread_id
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
with st.spinner("Assistant is thinking..."):
while True:
run_status = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run_status.status == "completed":
break
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = None
for message in reversed(messages.data):
if message.role == "assistant":
assistant_message = message.content[0].text.value
break
st.chat_message("assistant").write(assistant_message)
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
# Extract GitHub image URL
image_match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
assistant_message
)
if image_match:
st.session_state.image_url = image_match.group(0)
st.session_state.image_updated = True
st.rerun()
except Exception as e:
st.error(f"❌ Error: {str(e)}")
# ------------------ Right Column: Summary and FAQ ------------------
with right:
st.subheader("πŸ“Œ Summary")
# Parse page number from image URL if available
if st.session_state.image_url:
match = re.search(r'page_(\d+)', st.session_state.image_url)
page_number = int(match.group(1)) if match else 151
else:
page_number = 151 # default
# Get entry from structured data
page_entry = next((entry for entry in structured_data if entry.get("page") == page_number), None)
if page_entry:
summary_text = page_entry.get("summary", "No summary available.")
faq_list = page_entry.get("faqs", [])
else:
summary_text = "No summary available."
faq_list = []
st.markdown(summary_text)
st.subheader("❓ Auto-Generated FAQ")
if faq_list:
for faq in faq_list:
st.markdown(f"**Q:** {faq.get('question', '')}\n\n**A:** {faq.get('answer', '')}")
else:
st.info("No FAQs available for this page.")