documentaitest / app.py
IAMTFRMZA's picture
Update app.py
c725f07 verified
raw
history blame
5.65 kB
import streamlit as st
import os
import time
import re
import json
import requests
from PIL import Image
from openai import OpenAI
# ------------------ App Configuration ------------------
st.set_page_config(page_title="Document AI Assistant", layout="wide")
st.title("πŸ“„ Document AI Assistant")
st.caption("Chat with an AI Assistant on your medical/pathology documents")
# ------------------ Load API Key and Assistant ID from Hugging Face Secrets ------------------
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ASSISTANT_ID = os.environ.get("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
st.error("Missing secrets. Please ensure both OPENAI_API_KEY and ASSISTANT_ID are set in your Hugging Face Space secrets.")
st.stop()
client = OpenAI(api_key=OPENAI_API_KEY)
# ------------------ Session State Initialization ------------------
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread_id" not in st.session_state:
st.session_state.thread_id = None
if "image_url" not in st.session_state:
st.session_state.image_url = None
if "image_updated" not in st.session_state:
st.session_state.image_updated = False
# ------------------ Sidebar Controls ------------------
st.sidebar.header("πŸ”§ Settings")
if st.sidebar.button("πŸ”„ Clear Chat"):
st.session_state.messages = []
st.session_state.thread_id = None
st.session_state.image_url = None
st.session_state.image_updated = False
st.rerun()
show_image = st.sidebar.checkbox("πŸ“– Show Document Image", value=True)
# ------------------ Load Structured Summary/FAQ ------------------
with open("51940670-Manual-of-Surgical-Pathology-Third-Edition_1_structured_output.json", "r") as f:
structured_data = json.load(f)
# ------------------ Three-Column Layout ------------------
left, center, right = st.columns([1, 2, 1]) # adjust as needed
# ------------------ Left Column: Document Image ------------------
with left:
st.subheader("πŸ“„ Document Image")
if show_image and st.session_state.image_url:
try:
image = Image.open(requests.get(st.session_state.image_url, stream=True).raw)
st.image(image, caption="πŸ“‘ Extracted Page", use_column_width=True)
st.session_state.image_updated = False
except Exception as e:
st.warning("⚠️ Could not load image.")
# ------------------ Center Column: Chat UI ------------------
with center:
st.subheader("πŸ’¬ Document AI Assistant")
for message in st.session_state.messages:
role, content = message["role"], message["content"]
st.chat_message(role).write(content)
if prompt := st.chat_input("Type your question about the document..."):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
try:
if st.session_state.thread_id is None:
thread = client.beta.threads.create()
st.session_state.thread_id = thread.id
thread_id = st.session_state.thread_id
# Send user prompt
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
# Run assistant
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
# Poll until done
with st.spinner("Assistant is thinking..."):
while True:
run_status = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run_status.status == "completed":
break
time.sleep(1)
# Get assistant message
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = None
for message in reversed(messages.data):
if message.role == "assistant":
assistant_message = message.content[0].text.value
break
st.chat_message("assistant").write(assistant_message)
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
# Detect GitHub image in response
image_match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
assistant_message
)
if image_match:
st.session_state.image_url = image_match.group(0)
st.session_state.image_updated = True
st.rerun()
except Exception as e:
st.error(f"❌ Error: {str(e)}")
# ------------------ Right Column: Summary and FAQ ------------------
with right:
st.subheader("πŸ“Œ Summary")
if st.session_state.image_url:
match = re.search(r'page_(\d+)', st.session_state.image_url)
page_number = int(match.group(1)) if match else None
else:
page_number = 151 # default
summary_text = structured_data.get(str(page_number), {}).get("summary", "No summary available.")
st.markdown(summary_text)
st.subheader("❓ Auto-Generated FAQ")
faq_list = structured_data.get(str(page_number), {}).get("faqs", [])
if faq_list:
for faq in faq_list:
st.markdown(f"**Q:** {faq.get('question', '')}\n\n**A:** {faq.get('answer', '')}")
else:
st.info("No FAQs available for this page.")