Spaces:
Sleeping
Sleeping
File size: 6,324 Bytes
8c4492e b386f62 8c4492e b386f62 8c4492e c1043ca 8c4492e c1043ca 8c4492e c1043ca 8c4492e c1043ca 8c4492e c1043ca 8c4492e c1043ca 8c4492e c1043ca 8c4492e 91f00be 8c4492e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import os
import time
import re
import json
import requests
from PIL import Image
from openai import OpenAI
from io import BytesIO
# ------------------ App Configuration ------------------
st.set_page_config(page_title="Document AI Assistant", layout="wide")
st.title("π Document AI Assistant")
st.caption("Chat with an AI Assistant on your medical/pathology documents")
# ------------------ Load API Key and Assistant ID ------------------
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ASSISTANT_ID = os.environ.get("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
st.error("Missing secrets. Please ensure both OPENAI_API_KEY and ASSISTANT_ID are set in your Hugging Face Space secrets.")
st.stop()
client = OpenAI(api_key=OPENAI_API_KEY)
# ------------------ Load Structured JSON ------------------
STRUCTURED_JSON_PATH = "51940670-Manual-of-Surgical-Pathology-Third-Edition_1_structured_output.json"
try:
with open(STRUCTURED_JSON_PATH, "r") as f:
structured_data = json.load(f)
except Exception as e:
st.error(f"β Failed to load structured summary file: {e}")
st.stop()
# ------------------ Session State Initialization ------------------
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread_id" not in st.session_state:
st.session_state.thread_id = None
if "image_url" not in st.session_state:
st.session_state.image_url = None
if "image_updated" not in st.session_state:
st.session_state.image_updated = False
# ------------------ Sidebar Controls ------------------
st.sidebar.header("π§ Settings")
if st.sidebar.button("π Clear Chat"):
st.session_state.messages = []
st.session_state.thread_id = None
st.session_state.image_url = None
st.session_state.image_updated = False
st.rerun()
show_image = st.sidebar.checkbox("π Show Document Image", value=True)
# ------------------ Layout ------------------
left, center, right = st.columns([1, 2, 1])
# ------------------ Left Column: Document Image ------------------
with left:
st.subheader("π Document Image")
if show_image and st.session_state.image_url:
try:
image = Image.open(requests.get(st.session_state.image_url, stream=True).raw)
st.image(image, caption="π Extracted Page", use_container_width=True)
st.session_state.image_updated = False
except Exception as e:
st.warning("β οΈ Could not load image.")
# ------------------ Center Column: Chat UI ------------------
with center:
st.subheader("π¬ Document AI Assistant")
for message in st.session_state.messages:
role, content = message["role"], message["content"]
st.chat_message(role).write(content)
if prompt := st.chat_input("Type your question about the document..."):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
try:
if st.session_state.thread_id is None:
thread = client.beta.threads.create()
st.session_state.thread_id = thread.id
thread_id = st.session_state.thread_id
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
with st.spinner("Assistant is thinking..."):
while True:
run_status = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run_status.status == "completed":
break
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = None
for message in reversed(messages.data):
if message.role == "assistant":
assistant_message = message.content[0].text.value
break
st.chat_message("assistant").write(assistant_message)
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
# Extract GitHub image URL
image_match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
assistant_message
)
if image_match:
st.session_state.image_url = image_match.group(0)
st.session_state.image_updated = True
st.rerun()
except Exception as e:
st.error(f"β Error: {str(e)}")
# ------------------ Right Column: Structured Summary + FAQ (Button-based) ------------------
with right:
st.subheader("π Summary & FAQ (from Structured Data)")
col1, col2 = st.columns(2)
show_summary = col1.button("π Load Summary")
show_faq = col2.button("β Load FAQ")
summary_text = "Click the button to load summary."
faq_list = []
if st.session_state.image_url:
match = re.search(r'/(\d{3})\.png', st.session_state.image_url)
if match:
page_number = int(match.group(1))
page_entry = next((entry for entry in structured_data if entry.get("page_number") == page_number), None)
if page_entry:
if show_summary:
summary_text = page_entry.get("summary", "No summary available.")
if show_faq:
faq_list = page_entry.get("faqs", []) or page_entry.get("questions", [])
# Display Summary
if show_summary:
st.subheader("π Summary")
st.markdown(summary_text)
# Display FAQs
if show_faq:
st.subheader("β Auto-Generated FAQ")
if faq_list:
for faq in faq_list:
if isinstance(faq, dict):
st.markdown(f"**Q:** {faq.get('question', '')}\n\n**A:** {faq.get('answer', '')}")
else:
st.markdown(f"**Q:** {faq}")
else:
st.info("No FAQs available for this page.")
|