Spaces:
Running
Running
File size: 6,374 Bytes
e760d91 e1336eb 9d8abce 8077eca e760d91 9d8abce e760d91 e1336eb 9d8abce e1336eb e760d91 8077eca e760d91 8077eca e760d91 8077eca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
import os
import time
import re
import requests
import tempfile
from openai import OpenAI
from streamlit_webrtc import webrtc_streamer, WebRtcMode
import av
import numpy as np
import wave
# ------------------ Configuration ------------------
st.set_page_config(page_title="Document AI Assistant", layout="wide")
st.title("π Document AI Assistant")
st.caption("Chat with an AI Assistant on your medical/pathology documents")
# ------------------ Secrets ------------------
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ASSISTANT_ID = os.environ.get("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
st.error("β Missing secrets. Please set both OPENAI_API_KEY and ASSISTANT_ID in your Hugging Face Space settings.")
st.stop()
client = OpenAI(api_key=OPENAI_API_KEY)
# ------------------ Session State ------------------
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread_id" not in st.session_state:
st.session_state.thread_id = None
if "image_url" not in st.session_state:
st.session_state.image_url = None
if "audio_buffer" not in st.session_state:
st.session_state.audio_buffer = []
# ------------------ Whisper Transcription ------------------
def transcribe_audio(file_path, api_key):
with open(file_path, "rb") as f:
response = requests.post(
"https://api.openai.com/v1/audio/transcriptions",
headers={"Authorization": f"Bearer {api_key}"},
files={"file": f},
data={"model": "whisper-1"}
)
return response.json().get("text", None)
# ------------------ Audio Recorder ------------------
class AudioProcessor:
def __init__(self):
self.frames = []
def recv(self, frame):
audio = frame.to_ndarray()
self.frames.append(audio)
return av.AudioFrame.from_ndarray(audio, layout="mono")
def save_wav(frames, path, rate=48000):
audio_data = np.concatenate(frames)
with wave.open(path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(rate)
wf.writeframes(audio_data.tobytes())
# ------------------ Sidebar & Image Panel ------------------
st.sidebar.header("π§ Settings")
if st.sidebar.button("π Clear Chat"):
st.session_state.messages = []
st.session_state.thread_id = None
st.session_state.image_url = None
st.rerun()
show_image = st.sidebar.checkbox("π Show Document Image", value=True)
col1, col2 = st.columns([1, 2])
with col1:
if show_image and st.session_state.image_url:
st.image(st.session_state.image_url, caption="π Extracted Page", use_container_width=True)
# ------------------ Chat & Voice Panel ------------------
with col2:
for message in st.session_state.messages:
st.chat_message(message["role"]).write(message["content"])
# π€ Real-time voice recorder
st.subheader("ποΈ Ask with your voice")
audio_ctx = webrtc_streamer(
key="speech",
mode=WebRtcMode.SENDONLY,
in_audio_enabled=True,
audio_receiver_size=256
)
if audio_ctx.audio_receiver:
audio_processor = AudioProcessor()
result = audio_ctx.audio_receiver.recv()
audio_data = result.to_ndarray()
st.session_state.audio_buffer.append(audio_data)
# β±οΈ Auto stop after ~3 seconds
if len(st.session_state.audio_buffer) > 30:
tmp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
save_wav(st.session_state.audio_buffer, tmp_path)
st.session_state.audio_buffer = []
with st.spinner("π§ Transcribing..."):
transcript = transcribe_audio(tmp_path, OPENAI_API_KEY)
if transcript:
st.success("π " + transcript)
st.session_state.messages.append({"role": "user", "content": transcript})
st.chat_message("user").write(transcript)
prompt = transcript
try:
if st.session_state.thread_id is None:
thread = client.beta.threads.create()
st.session_state.thread_id = thread.id
thread_id = st.session_state.thread_id
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
with st.spinner("Assistant is thinking..."):
while True:
run_status = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run_status.status == "completed":
break
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = None
for message in reversed(messages.data):
if message.role == "assistant":
assistant_message = message.content[0].text.value
break
st.chat_message("assistant").write(assistant_message)
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
image_match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
assistant_message
)
if image_match:
st.session_state.image_url = image_match.group(0)
except Exception as e:
st.error(f"β Error: {str(e)}")
# Fallback text input
if prompt := st.chat_input("π¬ Or type your question..."):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
# You can add assistant logic here if you want it to run immediately
|