|
import os |
|
os.system("pip install torch transformers gradio matplotlib") |
|
|
|
|
|
import torch |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
torch.set_num_threads(torch.get_num_threads()) |
|
|
|
|
|
model_path = "HyperX-Sentience/RogueBERT-Toxicity-85K" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] |
|
|
|
def predict_toxicity(comment): |
|
"""Predicts the toxicity levels of a given comment.""" |
|
inputs = tokenizer(comment, truncation=True, padding="max_length", max_length=128, return_tensors="pt") |
|
inputs = {key: val.to(device) for key, val in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
probabilities = torch.sigmoid(outputs.logits).cpu().numpy()[0] |
|
|
|
return {labels[i]: float(probabilities[i]) for i in range(len(labels))} |
|
|
|
def format_toxicity_data(comment): |
|
"""Formats the toxicity scores for a modern bar graph.""" |
|
scores = predict_toxicity(comment) |
|
df = pd.DataFrame({"Category": list(scores.keys()), "Score": list(scores.values())}) |
|
return df |
|
|
|
|
|
demo = gr.Interface( |
|
fn=format_toxicity_data, |
|
inputs=gr.Textbox(label="Enter a comment:"), |
|
outputs=gr.BarPlot( |
|
value=None, |
|
x="Category", |
|
y="Score", |
|
title="Toxicity Analysis", |
|
y_lim=[0, 1], |
|
color="blue", |
|
label="Toxicity Scores", |
|
interactive=False |
|
), |
|
title="Toxicity Detection with RogueBERT", |
|
description="Enter a comment to analyze its toxicity levels. The results will be displayed as a modern bar chart." |
|
) |
|
|
|
demo.launch() |
|
|