Spaces:
Running
on
L4
Running
on
L4
Commit
Β·
ac37772
1
Parent(s):
5e8dc4f
files rearranged
Browse files- {data β latentsync/data}/syncnet_dataset.py +0 -0
- {data β latentsync/data}/unet_dataset.py +0 -0
- latentsync/models/attention.py +492 -0
- latentsync/models/motion_module.py +332 -0
- latentsync/models/resnet.py +234 -0
- latentsync/models/syncnet.py +233 -0
- latentsync/models/syncnet_wav2lip.py +90 -0
- latentsync/models/unet.py +528 -0
- latentsync/models/unet_blocks.py +903 -0
- latentsync/models/utils.py +19 -0
- {pipelines β latentsync/pipelines}/lipsync_pipeline.py +0 -0
- {trepa β latentsync/trepa}/__init__.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/__init__.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/utils.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_finetune.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_pretrain.py +0 -0
- {trepa β latentsync/trepa}/third_party/__init__.py +0 -0
- {trepa β latentsync/trepa}/utils/__init__.py +0 -0
- {trepa β latentsync/trepa}/utils/data_utils.py +0 -0
- {trepa β latentsync/trepa}/utils/metric_utils.py +0 -0
- {utils β latentsync/utils}/affine_transform.py +0 -0
- {utils β latentsync/utils}/audio.py +0 -0
- {utils β latentsync/utils}/av_reader.py +0 -0
- {utils β latentsync/utils}/image_processor.py +0 -0
- latentsync/utils/mask.png +0 -0
- {utils β latentsync/utils}/util.py +0 -0
- {whisper β latentsync/whisper}/audio2feature.py +0 -0
- {whisper β latentsync/whisper}/whisper/__init__.py +0 -0
- {whisper β latentsync/whisper}/whisper/__main__.py +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/merges.txt +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/special_tokens_map.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/tokenizer_config.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/vocab.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/mel_filters.npz +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/added_tokens.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/merges.txt +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/special_tokens_map.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/tokenizer_config.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/vocab.json +0 -0
- {whisper β latentsync/whisper}/whisper/audio.py +0 -0
- {whisper β latentsync/whisper}/whisper/decoding.py +0 -0
- {whisper β latentsync/whisper}/whisper/model.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/__init__.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/basic.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/english.json +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/english.py +0 -0
- {whisper β latentsync/whisper}/whisper/tokenizer.py +0 -0
- {whisper β latentsync/whisper}/whisper/transcribe.py +0 -0
- {whisper β latentsync/whisper}/whisper/utils.py +0 -0
{data β latentsync/data}/syncnet_dataset.py
RENAMED
File without changes
|
{data β latentsync/data}/unet_dataset.py
RENAMED
File without changes
|
latentsync/models/attention.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from turtle import forward
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.modeling_utils import ModelMixin
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.utils.import_utils import is_xformers_available
|
15 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
16 |
+
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
from .utils import zero_module
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class Transformer3DModelOutput(BaseOutput):
|
23 |
+
sample: torch.FloatTensor
|
24 |
+
|
25 |
+
|
26 |
+
if is_xformers_available():
|
27 |
+
import xformers
|
28 |
+
import xformers.ops
|
29 |
+
else:
|
30 |
+
xformers = None
|
31 |
+
|
32 |
+
|
33 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
34 |
+
@register_to_config
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
num_attention_heads: int = 16,
|
38 |
+
attention_head_dim: int = 88,
|
39 |
+
in_channels: Optional[int] = None,
|
40 |
+
num_layers: int = 1,
|
41 |
+
dropout: float = 0.0,
|
42 |
+
norm_num_groups: int = 32,
|
43 |
+
cross_attention_dim: Optional[int] = None,
|
44 |
+
attention_bias: bool = False,
|
45 |
+
activation_fn: str = "geglu",
|
46 |
+
num_embeds_ada_norm: Optional[int] = None,
|
47 |
+
use_linear_projection: bool = False,
|
48 |
+
only_cross_attention: bool = False,
|
49 |
+
upcast_attention: bool = False,
|
50 |
+
use_motion_module: bool = False,
|
51 |
+
unet_use_cross_frame_attention=None,
|
52 |
+
unet_use_temporal_attention=None,
|
53 |
+
add_audio_layer=False,
|
54 |
+
audio_condition_method="cross_attn",
|
55 |
+
custom_audio_layer: bool = False,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
self.use_linear_projection = use_linear_projection
|
59 |
+
self.num_attention_heads = num_attention_heads
|
60 |
+
self.attention_head_dim = attention_head_dim
|
61 |
+
inner_dim = num_attention_heads * attention_head_dim
|
62 |
+
|
63 |
+
# Define input layers
|
64 |
+
self.in_channels = in_channels
|
65 |
+
|
66 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
67 |
+
if use_linear_projection:
|
68 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
69 |
+
else:
|
70 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
71 |
+
|
72 |
+
if not custom_audio_layer:
|
73 |
+
# Define transformers blocks
|
74 |
+
self.transformer_blocks = nn.ModuleList(
|
75 |
+
[
|
76 |
+
BasicTransformerBlock(
|
77 |
+
inner_dim,
|
78 |
+
num_attention_heads,
|
79 |
+
attention_head_dim,
|
80 |
+
dropout=dropout,
|
81 |
+
cross_attention_dim=cross_attention_dim,
|
82 |
+
activation_fn=activation_fn,
|
83 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
84 |
+
attention_bias=attention_bias,
|
85 |
+
only_cross_attention=only_cross_attention,
|
86 |
+
upcast_attention=upcast_attention,
|
87 |
+
use_motion_module=use_motion_module,
|
88 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
89 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
90 |
+
add_audio_layer=add_audio_layer,
|
91 |
+
custom_audio_layer=custom_audio_layer,
|
92 |
+
audio_condition_method=audio_condition_method,
|
93 |
+
)
|
94 |
+
for d in range(num_layers)
|
95 |
+
]
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
self.transformer_blocks = nn.ModuleList(
|
99 |
+
[
|
100 |
+
AudioTransformerBlock(
|
101 |
+
inner_dim,
|
102 |
+
num_attention_heads,
|
103 |
+
attention_head_dim,
|
104 |
+
dropout=dropout,
|
105 |
+
cross_attention_dim=cross_attention_dim,
|
106 |
+
activation_fn=activation_fn,
|
107 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
108 |
+
attention_bias=attention_bias,
|
109 |
+
only_cross_attention=only_cross_attention,
|
110 |
+
upcast_attention=upcast_attention,
|
111 |
+
use_motion_module=use_motion_module,
|
112 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
113 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
114 |
+
add_audio_layer=add_audio_layer,
|
115 |
+
)
|
116 |
+
for d in range(num_layers)
|
117 |
+
]
|
118 |
+
)
|
119 |
+
|
120 |
+
# 4. Define output layers
|
121 |
+
if use_linear_projection:
|
122 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
123 |
+
else:
|
124 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
125 |
+
|
126 |
+
if custom_audio_layer:
|
127 |
+
self.proj_out = zero_module(self.proj_out)
|
128 |
+
|
129 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
130 |
+
# Input
|
131 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
132 |
+
video_length = hidden_states.shape[2]
|
133 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
134 |
+
|
135 |
+
# No need to do this for audio input, because different audio samples are independent
|
136 |
+
# encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
137 |
+
|
138 |
+
batch, channel, height, weight = hidden_states.shape
|
139 |
+
residual = hidden_states
|
140 |
+
|
141 |
+
hidden_states = self.norm(hidden_states)
|
142 |
+
if not self.use_linear_projection:
|
143 |
+
hidden_states = self.proj_in(hidden_states)
|
144 |
+
inner_dim = hidden_states.shape[1]
|
145 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
146 |
+
else:
|
147 |
+
inner_dim = hidden_states.shape[1]
|
148 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
149 |
+
hidden_states = self.proj_in(hidden_states)
|
150 |
+
|
151 |
+
# Blocks
|
152 |
+
for block in self.transformer_blocks:
|
153 |
+
hidden_states = block(
|
154 |
+
hidden_states,
|
155 |
+
encoder_hidden_states=encoder_hidden_states,
|
156 |
+
timestep=timestep,
|
157 |
+
video_length=video_length,
|
158 |
+
)
|
159 |
+
|
160 |
+
# Output
|
161 |
+
if not self.use_linear_projection:
|
162 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
163 |
+
hidden_states = self.proj_out(hidden_states)
|
164 |
+
else:
|
165 |
+
hidden_states = self.proj_out(hidden_states)
|
166 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
167 |
+
|
168 |
+
output = hidden_states + residual
|
169 |
+
|
170 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
171 |
+
if not return_dict:
|
172 |
+
return (output,)
|
173 |
+
|
174 |
+
return Transformer3DModelOutput(sample=output)
|
175 |
+
|
176 |
+
|
177 |
+
class BasicTransformerBlock(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
dim: int,
|
181 |
+
num_attention_heads: int,
|
182 |
+
attention_head_dim: int,
|
183 |
+
dropout=0.0,
|
184 |
+
cross_attention_dim: Optional[int] = None,
|
185 |
+
activation_fn: str = "geglu",
|
186 |
+
num_embeds_ada_norm: Optional[int] = None,
|
187 |
+
attention_bias: bool = False,
|
188 |
+
only_cross_attention: bool = False,
|
189 |
+
upcast_attention: bool = False,
|
190 |
+
use_motion_module: bool = False,
|
191 |
+
unet_use_cross_frame_attention=None,
|
192 |
+
unet_use_temporal_attention=None,
|
193 |
+
add_audio_layer=False,
|
194 |
+
custom_audio_layer=False,
|
195 |
+
audio_condition_method="cross_attn",
|
196 |
+
):
|
197 |
+
super().__init__()
|
198 |
+
self.only_cross_attention = only_cross_attention
|
199 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
200 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
201 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
202 |
+
self.use_motion_module = use_motion_module
|
203 |
+
self.add_audio_layer = add_audio_layer
|
204 |
+
|
205 |
+
# SC-Attn
|
206 |
+
assert unet_use_cross_frame_attention is not None
|
207 |
+
if unet_use_cross_frame_attention:
|
208 |
+
raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
|
209 |
+
else:
|
210 |
+
self.attn1 = CrossAttention(
|
211 |
+
query_dim=dim,
|
212 |
+
heads=num_attention_heads,
|
213 |
+
dim_head=attention_head_dim,
|
214 |
+
dropout=dropout,
|
215 |
+
bias=attention_bias,
|
216 |
+
upcast_attention=upcast_attention,
|
217 |
+
)
|
218 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
219 |
+
|
220 |
+
# Cross-Attn
|
221 |
+
if add_audio_layer and audio_condition_method == "cross_attn" and not custom_audio_layer:
|
222 |
+
self.audio_cross_attn = AudioCrossAttn(
|
223 |
+
dim=dim,
|
224 |
+
cross_attention_dim=cross_attention_dim,
|
225 |
+
num_attention_heads=num_attention_heads,
|
226 |
+
attention_head_dim=attention_head_dim,
|
227 |
+
dropout=dropout,
|
228 |
+
attention_bias=attention_bias,
|
229 |
+
upcast_attention=upcast_attention,
|
230 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
231 |
+
use_ada_layer_norm=self.use_ada_layer_norm,
|
232 |
+
zero_proj_out=False,
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
self.audio_cross_attn = None
|
236 |
+
|
237 |
+
# Feed-forward
|
238 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
239 |
+
self.norm3 = nn.LayerNorm(dim)
|
240 |
+
|
241 |
+
# Temp-Attn
|
242 |
+
assert unet_use_temporal_attention is not None
|
243 |
+
if unet_use_temporal_attention:
|
244 |
+
self.attn_temp = CrossAttention(
|
245 |
+
query_dim=dim,
|
246 |
+
heads=num_attention_heads,
|
247 |
+
dim_head=attention_head_dim,
|
248 |
+
dropout=dropout,
|
249 |
+
bias=attention_bias,
|
250 |
+
upcast_attention=upcast_attention,
|
251 |
+
)
|
252 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
253 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
254 |
+
|
255 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
256 |
+
if not is_xformers_available():
|
257 |
+
print("Here is how to install it")
|
258 |
+
raise ModuleNotFoundError(
|
259 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
260 |
+
" xformers",
|
261 |
+
name="xformers",
|
262 |
+
)
|
263 |
+
elif not torch.cuda.is_available():
|
264 |
+
raise ValueError(
|
265 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
266 |
+
" available for GPU "
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
try:
|
270 |
+
# Make sure we can run the memory efficient attention
|
271 |
+
_ = xformers.ops.memory_efficient_attention(
|
272 |
+
torch.randn((1, 2, 40), device="cuda"),
|
273 |
+
torch.randn((1, 2, 40), device="cuda"),
|
274 |
+
torch.randn((1, 2, 40), device="cuda"),
|
275 |
+
)
|
276 |
+
except Exception as e:
|
277 |
+
raise e
|
278 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
279 |
+
if self.audio_cross_attn is not None:
|
280 |
+
self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
|
281 |
+
use_memory_efficient_attention_xformers
|
282 |
+
)
|
283 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
|
287 |
+
):
|
288 |
+
# SparseCausal-Attention
|
289 |
+
norm_hidden_states = (
|
290 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
291 |
+
)
|
292 |
+
|
293 |
+
# if self.only_cross_attention:
|
294 |
+
# hidden_states = (
|
295 |
+
# self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
296 |
+
# )
|
297 |
+
# else:
|
298 |
+
# hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
299 |
+
|
300 |
+
# pdb.set_trace()
|
301 |
+
if self.unet_use_cross_frame_attention:
|
302 |
+
hidden_states = (
|
303 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
|
304 |
+
+ hidden_states
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
308 |
+
|
309 |
+
if self.audio_cross_attn is not None and encoder_hidden_states is not None:
|
310 |
+
hidden_states = self.audio_cross_attn(
|
311 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
312 |
+
)
|
313 |
+
|
314 |
+
# Feed-forward
|
315 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
316 |
+
|
317 |
+
# Temporal-Attention
|
318 |
+
if self.unet_use_temporal_attention:
|
319 |
+
d = hidden_states.shape[1]
|
320 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
321 |
+
norm_hidden_states = (
|
322 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
323 |
+
)
|
324 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
325 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
326 |
+
|
327 |
+
return hidden_states
|
328 |
+
|
329 |
+
|
330 |
+
class AudioTransformerBlock(nn.Module):
|
331 |
+
def __init__(
|
332 |
+
self,
|
333 |
+
dim: int,
|
334 |
+
num_attention_heads: int,
|
335 |
+
attention_head_dim: int,
|
336 |
+
dropout=0.0,
|
337 |
+
cross_attention_dim: Optional[int] = None,
|
338 |
+
activation_fn: str = "geglu",
|
339 |
+
num_embeds_ada_norm: Optional[int] = None,
|
340 |
+
attention_bias: bool = False,
|
341 |
+
only_cross_attention: bool = False,
|
342 |
+
upcast_attention: bool = False,
|
343 |
+
use_motion_module: bool = False,
|
344 |
+
unet_use_cross_frame_attention=None,
|
345 |
+
unet_use_temporal_attention=None,
|
346 |
+
add_audio_layer=False,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.only_cross_attention = only_cross_attention
|
350 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
351 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
352 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
353 |
+
self.use_motion_module = use_motion_module
|
354 |
+
self.add_audio_layer = add_audio_layer
|
355 |
+
|
356 |
+
# SC-Attn
|
357 |
+
assert unet_use_cross_frame_attention is not None
|
358 |
+
if unet_use_cross_frame_attention:
|
359 |
+
raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
|
360 |
+
else:
|
361 |
+
self.attn1 = CrossAttention(
|
362 |
+
query_dim=dim,
|
363 |
+
heads=num_attention_heads,
|
364 |
+
dim_head=attention_head_dim,
|
365 |
+
dropout=dropout,
|
366 |
+
bias=attention_bias,
|
367 |
+
upcast_attention=upcast_attention,
|
368 |
+
)
|
369 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
370 |
+
|
371 |
+
self.audio_cross_attn = AudioCrossAttn(
|
372 |
+
dim=dim,
|
373 |
+
cross_attention_dim=cross_attention_dim,
|
374 |
+
num_attention_heads=num_attention_heads,
|
375 |
+
attention_head_dim=attention_head_dim,
|
376 |
+
dropout=dropout,
|
377 |
+
attention_bias=attention_bias,
|
378 |
+
upcast_attention=upcast_attention,
|
379 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
380 |
+
use_ada_layer_norm=self.use_ada_layer_norm,
|
381 |
+
zero_proj_out=False,
|
382 |
+
)
|
383 |
+
|
384 |
+
# Feed-forward
|
385 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
386 |
+
self.norm3 = nn.LayerNorm(dim)
|
387 |
+
|
388 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
389 |
+
if not is_xformers_available():
|
390 |
+
print("Here is how to install it")
|
391 |
+
raise ModuleNotFoundError(
|
392 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
393 |
+
" xformers",
|
394 |
+
name="xformers",
|
395 |
+
)
|
396 |
+
elif not torch.cuda.is_available():
|
397 |
+
raise ValueError(
|
398 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
399 |
+
" available for GPU "
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
try:
|
403 |
+
# Make sure we can run the memory efficient attention
|
404 |
+
_ = xformers.ops.memory_efficient_attention(
|
405 |
+
torch.randn((1, 2, 40), device="cuda"),
|
406 |
+
torch.randn((1, 2, 40), device="cuda"),
|
407 |
+
torch.randn((1, 2, 40), device="cuda"),
|
408 |
+
)
|
409 |
+
except Exception as e:
|
410 |
+
raise e
|
411 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
412 |
+
if self.audio_cross_attn is not None:
|
413 |
+
self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
|
414 |
+
use_memory_efficient_attention_xformers
|
415 |
+
)
|
416 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
417 |
+
|
418 |
+
def forward(
|
419 |
+
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
|
420 |
+
):
|
421 |
+
# SparseCausal-Attention
|
422 |
+
norm_hidden_states = (
|
423 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
424 |
+
)
|
425 |
+
|
426 |
+
# pdb.set_trace()
|
427 |
+
if self.unet_use_cross_frame_attention:
|
428 |
+
hidden_states = (
|
429 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
|
430 |
+
+ hidden_states
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
434 |
+
|
435 |
+
if self.audio_cross_attn is not None and encoder_hidden_states is not None:
|
436 |
+
hidden_states = self.audio_cross_attn(
|
437 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
438 |
+
)
|
439 |
+
|
440 |
+
# Feed-forward
|
441 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
442 |
+
|
443 |
+
return hidden_states
|
444 |
+
|
445 |
+
|
446 |
+
class AudioCrossAttn(nn.Module):
|
447 |
+
def __init__(
|
448 |
+
self,
|
449 |
+
dim,
|
450 |
+
cross_attention_dim,
|
451 |
+
num_attention_heads,
|
452 |
+
attention_head_dim,
|
453 |
+
dropout,
|
454 |
+
attention_bias,
|
455 |
+
upcast_attention,
|
456 |
+
num_embeds_ada_norm,
|
457 |
+
use_ada_layer_norm,
|
458 |
+
zero_proj_out=False,
|
459 |
+
):
|
460 |
+
super().__init__()
|
461 |
+
|
462 |
+
self.norm = AdaLayerNorm(dim, num_embeds_ada_norm) if use_ada_layer_norm else nn.LayerNorm(dim)
|
463 |
+
self.attn = CrossAttention(
|
464 |
+
query_dim=dim,
|
465 |
+
cross_attention_dim=cross_attention_dim,
|
466 |
+
heads=num_attention_heads,
|
467 |
+
dim_head=attention_head_dim,
|
468 |
+
dropout=dropout,
|
469 |
+
bias=attention_bias,
|
470 |
+
upcast_attention=upcast_attention,
|
471 |
+
)
|
472 |
+
|
473 |
+
if zero_proj_out:
|
474 |
+
self.proj_out = zero_module(nn.Linear(dim, dim))
|
475 |
+
|
476 |
+
self.zero_proj_out = zero_proj_out
|
477 |
+
self.use_ada_layer_norm = use_ada_layer_norm
|
478 |
+
|
479 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
|
480 |
+
previous_hidden_states = hidden_states
|
481 |
+
hidden_states = self.norm(hidden_states, timestep) if self.use_ada_layer_norm else self.norm(hidden_states)
|
482 |
+
|
483 |
+
if encoder_hidden_states.dim() == 4:
|
484 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, "b f n d -> (b f) n d")
|
485 |
+
|
486 |
+
hidden_states = self.attn(
|
487 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
488 |
+
)
|
489 |
+
|
490 |
+
if self.zero_proj_out:
|
491 |
+
hidden_states = self.proj_out(hidden_states)
|
492 |
+
return hidden_states + previous_hidden_states
|
latentsync/models/motion_module.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
2 |
+
|
3 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
4 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module
|
5 |
+
# But the results are poor, and we decied to leave the code here for possible future usage
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers.modeling_utils import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput
|
16 |
+
from diffusers.utils.import_utils import is_xformers_available
|
17 |
+
from diffusers.models.attention import CrossAttention, FeedForward
|
18 |
+
|
19 |
+
from einops import rearrange, repeat
|
20 |
+
import math
|
21 |
+
from .utils import zero_module
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
26 |
+
sample: torch.FloatTensor
|
27 |
+
|
28 |
+
|
29 |
+
if is_xformers_available():
|
30 |
+
import xformers
|
31 |
+
import xformers.ops
|
32 |
+
else:
|
33 |
+
xformers = None
|
34 |
+
|
35 |
+
|
36 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
37 |
+
if motion_module_type == "Vanilla":
|
38 |
+
return VanillaTemporalModule(
|
39 |
+
in_channels=in_channels,
|
40 |
+
**motion_module_kwargs,
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
raise ValueError
|
44 |
+
|
45 |
+
|
46 |
+
class VanillaTemporalModule(nn.Module):
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
in_channels,
|
50 |
+
num_attention_heads=8,
|
51 |
+
num_transformer_block=2,
|
52 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
53 |
+
cross_frame_attention_mode=None,
|
54 |
+
temporal_position_encoding=False,
|
55 |
+
temporal_position_encoding_max_len=24,
|
56 |
+
temporal_attention_dim_div=1,
|
57 |
+
zero_initialize=True,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
62 |
+
in_channels=in_channels,
|
63 |
+
num_attention_heads=num_attention_heads,
|
64 |
+
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
|
65 |
+
num_layers=num_transformer_block,
|
66 |
+
attention_block_types=attention_block_types,
|
67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
68 |
+
temporal_position_encoding=temporal_position_encoding,
|
69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
70 |
+
)
|
71 |
+
|
72 |
+
if zero_initialize:
|
73 |
+
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
|
74 |
+
|
75 |
+
def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
|
76 |
+
hidden_states = input_tensor
|
77 |
+
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
|
78 |
+
|
79 |
+
output = hidden_states
|
80 |
+
return output
|
81 |
+
|
82 |
+
|
83 |
+
class TemporalTransformer3DModel(nn.Module):
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
in_channels,
|
87 |
+
num_attention_heads,
|
88 |
+
attention_head_dim,
|
89 |
+
num_layers,
|
90 |
+
attention_block_types=(
|
91 |
+
"Temporal_Self",
|
92 |
+
"Temporal_Self",
|
93 |
+
),
|
94 |
+
dropout=0.0,
|
95 |
+
norm_num_groups=32,
|
96 |
+
cross_attention_dim=768,
|
97 |
+
activation_fn="geglu",
|
98 |
+
attention_bias=False,
|
99 |
+
upcast_attention=False,
|
100 |
+
cross_frame_attention_mode=None,
|
101 |
+
temporal_position_encoding=False,
|
102 |
+
temporal_position_encoding_max_len=24,
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
|
106 |
+
inner_dim = num_attention_heads * attention_head_dim
|
107 |
+
|
108 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
109 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
110 |
+
|
111 |
+
self.transformer_blocks = nn.ModuleList(
|
112 |
+
[
|
113 |
+
TemporalTransformerBlock(
|
114 |
+
dim=inner_dim,
|
115 |
+
num_attention_heads=num_attention_heads,
|
116 |
+
attention_head_dim=attention_head_dim,
|
117 |
+
attention_block_types=attention_block_types,
|
118 |
+
dropout=dropout,
|
119 |
+
norm_num_groups=norm_num_groups,
|
120 |
+
cross_attention_dim=cross_attention_dim,
|
121 |
+
activation_fn=activation_fn,
|
122 |
+
attention_bias=attention_bias,
|
123 |
+
upcast_attention=upcast_attention,
|
124 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
125 |
+
temporal_position_encoding=temporal_position_encoding,
|
126 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
127 |
+
)
|
128 |
+
for d in range(num_layers)
|
129 |
+
]
|
130 |
+
)
|
131 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
132 |
+
|
133 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
134 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
135 |
+
video_length = hidden_states.shape[2]
|
136 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
137 |
+
|
138 |
+
batch, channel, height, weight = hidden_states.shape
|
139 |
+
residual = hidden_states
|
140 |
+
|
141 |
+
hidden_states = self.norm(hidden_states)
|
142 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
|
143 |
+
hidden_states = self.proj_in(hidden_states)
|
144 |
+
|
145 |
+
# Transformer Blocks
|
146 |
+
for block in self.transformer_blocks:
|
147 |
+
hidden_states = block(
|
148 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length
|
149 |
+
)
|
150 |
+
|
151 |
+
# output
|
152 |
+
hidden_states = self.proj_out(hidden_states)
|
153 |
+
hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2).contiguous()
|
154 |
+
|
155 |
+
output = hidden_states + residual
|
156 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
157 |
+
|
158 |
+
return output
|
159 |
+
|
160 |
+
|
161 |
+
class TemporalTransformerBlock(nn.Module):
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
dim,
|
165 |
+
num_attention_heads,
|
166 |
+
attention_head_dim,
|
167 |
+
attention_block_types=(
|
168 |
+
"Temporal_Self",
|
169 |
+
"Temporal_Self",
|
170 |
+
),
|
171 |
+
dropout=0.0,
|
172 |
+
norm_num_groups=32,
|
173 |
+
cross_attention_dim=768,
|
174 |
+
activation_fn="geglu",
|
175 |
+
attention_bias=False,
|
176 |
+
upcast_attention=False,
|
177 |
+
cross_frame_attention_mode=None,
|
178 |
+
temporal_position_encoding=False,
|
179 |
+
temporal_position_encoding_max_len=24,
|
180 |
+
):
|
181 |
+
super().__init__()
|
182 |
+
|
183 |
+
attention_blocks = []
|
184 |
+
norms = []
|
185 |
+
|
186 |
+
for block_name in attention_block_types:
|
187 |
+
attention_blocks.append(
|
188 |
+
VersatileAttention(
|
189 |
+
attention_mode=block_name.split("_")[0],
|
190 |
+
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
|
191 |
+
query_dim=dim,
|
192 |
+
heads=num_attention_heads,
|
193 |
+
dim_head=attention_head_dim,
|
194 |
+
dropout=dropout,
|
195 |
+
bias=attention_bias,
|
196 |
+
upcast_attention=upcast_attention,
|
197 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
198 |
+
temporal_position_encoding=temporal_position_encoding,
|
199 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
200 |
+
)
|
201 |
+
)
|
202 |
+
norms.append(nn.LayerNorm(dim))
|
203 |
+
|
204 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
205 |
+
self.norms = nn.ModuleList(norms)
|
206 |
+
|
207 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
208 |
+
self.ff_norm = nn.LayerNorm(dim)
|
209 |
+
|
210 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
211 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
212 |
+
norm_hidden_states = norm(hidden_states)
|
213 |
+
hidden_states = (
|
214 |
+
attention_block(
|
215 |
+
norm_hidden_states,
|
216 |
+
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
|
217 |
+
video_length=video_length,
|
218 |
+
)
|
219 |
+
+ hidden_states
|
220 |
+
)
|
221 |
+
|
222 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
223 |
+
|
224 |
+
output = hidden_states
|
225 |
+
return output
|
226 |
+
|
227 |
+
|
228 |
+
class PositionalEncoding(nn.Module):
|
229 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
230 |
+
super().__init__()
|
231 |
+
self.dropout = nn.Dropout(p=dropout)
|
232 |
+
position = torch.arange(max_len).unsqueeze(1)
|
233 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
234 |
+
pe = torch.zeros(1, max_len, d_model)
|
235 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
236 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
237 |
+
self.register_buffer("pe", pe)
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
x = x + self.pe[:, : x.size(1)]
|
241 |
+
return self.dropout(x)
|
242 |
+
|
243 |
+
|
244 |
+
class VersatileAttention(CrossAttention):
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
attention_mode=None,
|
248 |
+
cross_frame_attention_mode=None,
|
249 |
+
temporal_position_encoding=False,
|
250 |
+
temporal_position_encoding_max_len=24,
|
251 |
+
*args,
|
252 |
+
**kwargs,
|
253 |
+
):
|
254 |
+
super().__init__(*args, **kwargs)
|
255 |
+
assert attention_mode == "Temporal"
|
256 |
+
|
257 |
+
self.attention_mode = attention_mode
|
258 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
259 |
+
|
260 |
+
self.pos_encoder = (
|
261 |
+
PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len)
|
262 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
263 |
+
else None
|
264 |
+
)
|
265 |
+
|
266 |
+
def extra_repr(self):
|
267 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
268 |
+
|
269 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
270 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
271 |
+
|
272 |
+
if self.attention_mode == "Temporal":
|
273 |
+
d = hidden_states.shape[1]
|
274 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
275 |
+
|
276 |
+
if self.pos_encoder is not None:
|
277 |
+
hidden_states = self.pos_encoder(hidden_states)
|
278 |
+
|
279 |
+
encoder_hidden_states = (
|
280 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
281 |
+
if encoder_hidden_states is not None
|
282 |
+
else encoder_hidden_states
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
raise NotImplementedError
|
286 |
+
|
287 |
+
# encoder_hidden_states = encoder_hidden_states
|
288 |
+
|
289 |
+
if self.group_norm is not None:
|
290 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
291 |
+
|
292 |
+
query = self.to_q(hidden_states)
|
293 |
+
dim = query.shape[-1]
|
294 |
+
query = self.reshape_heads_to_batch_dim(query)
|
295 |
+
|
296 |
+
if self.added_kv_proj_dim is not None:
|
297 |
+
raise NotImplementedError
|
298 |
+
|
299 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
300 |
+
key = self.to_k(encoder_hidden_states)
|
301 |
+
value = self.to_v(encoder_hidden_states)
|
302 |
+
|
303 |
+
key = self.reshape_heads_to_batch_dim(key)
|
304 |
+
value = self.reshape_heads_to_batch_dim(value)
|
305 |
+
|
306 |
+
if attention_mask is not None:
|
307 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
308 |
+
target_length = query.shape[1]
|
309 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
310 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
311 |
+
|
312 |
+
# attention, what we cannot get enough of
|
313 |
+
if self._use_memory_efficient_attention_xformers:
|
314 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
315 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
316 |
+
hidden_states = hidden_states.to(query.dtype)
|
317 |
+
else:
|
318 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
319 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
320 |
+
else:
|
321 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
322 |
+
|
323 |
+
# linear proj
|
324 |
+
hidden_states = self.to_out[0](hidden_states)
|
325 |
+
|
326 |
+
# dropout
|
327 |
+
hidden_states = self.to_out[1](hidden_states)
|
328 |
+
|
329 |
+
if self.attention_mode == "Temporal":
|
330 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
331 |
+
|
332 |
+
return hidden_states
|
latentsync/models/resnet.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
22 |
+
def forward(self, x):
|
23 |
+
video_length = x.shape[2]
|
24 |
+
|
25 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
26 |
+
x = super().forward(x)
|
27 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
28 |
+
|
29 |
+
return x
|
30 |
+
|
31 |
+
|
32 |
+
class Upsample3D(nn.Module):
|
33 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
34 |
+
super().__init__()
|
35 |
+
self.channels = channels
|
36 |
+
self.out_channels = out_channels or channels
|
37 |
+
self.use_conv = use_conv
|
38 |
+
self.use_conv_transpose = use_conv_transpose
|
39 |
+
self.name = name
|
40 |
+
|
41 |
+
conv = None
|
42 |
+
if use_conv_transpose:
|
43 |
+
raise NotImplementedError
|
44 |
+
elif use_conv:
|
45 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
46 |
+
|
47 |
+
def forward(self, hidden_states, output_size=None):
|
48 |
+
assert hidden_states.shape[1] == self.channels
|
49 |
+
|
50 |
+
if self.use_conv_transpose:
|
51 |
+
raise NotImplementedError
|
52 |
+
|
53 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
54 |
+
dtype = hidden_states.dtype
|
55 |
+
if dtype == torch.bfloat16:
|
56 |
+
hidden_states = hidden_states.to(torch.float32)
|
57 |
+
|
58 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
59 |
+
if hidden_states.shape[0] >= 64:
|
60 |
+
hidden_states = hidden_states.contiguous()
|
61 |
+
|
62 |
+
# if `output_size` is passed we force the interpolation output
|
63 |
+
# size and do not make use of `scale_factor=2`
|
64 |
+
if output_size is None:
|
65 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
66 |
+
else:
|
67 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
68 |
+
|
69 |
+
# If the input is bfloat16, we cast back to bfloat16
|
70 |
+
if dtype == torch.bfloat16:
|
71 |
+
hidden_states = hidden_states.to(dtype)
|
72 |
+
|
73 |
+
# if self.use_conv:
|
74 |
+
# if self.name == "conv":
|
75 |
+
# hidden_states = self.conv(hidden_states)
|
76 |
+
# else:
|
77 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
78 |
+
hidden_states = self.conv(hidden_states)
|
79 |
+
|
80 |
+
return hidden_states
|
81 |
+
|
82 |
+
|
83 |
+
class Downsample3D(nn.Module):
|
84 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
85 |
+
super().__init__()
|
86 |
+
self.channels = channels
|
87 |
+
self.out_channels = out_channels or channels
|
88 |
+
self.use_conv = use_conv
|
89 |
+
self.padding = padding
|
90 |
+
stride = 2
|
91 |
+
self.name = name
|
92 |
+
|
93 |
+
if use_conv:
|
94 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
95 |
+
else:
|
96 |
+
raise NotImplementedError
|
97 |
+
|
98 |
+
def forward(self, hidden_states):
|
99 |
+
assert hidden_states.shape[1] == self.channels
|
100 |
+
if self.use_conv and self.padding == 0:
|
101 |
+
raise NotImplementedError
|
102 |
+
|
103 |
+
assert hidden_states.shape[1] == self.channels
|
104 |
+
hidden_states = self.conv(hidden_states)
|
105 |
+
|
106 |
+
return hidden_states
|
107 |
+
|
108 |
+
|
109 |
+
class ResnetBlock3D(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
*,
|
113 |
+
in_channels,
|
114 |
+
out_channels=None,
|
115 |
+
conv_shortcut=False,
|
116 |
+
dropout=0.0,
|
117 |
+
temb_channels=512,
|
118 |
+
groups=32,
|
119 |
+
groups_out=None,
|
120 |
+
pre_norm=True,
|
121 |
+
eps=1e-6,
|
122 |
+
non_linearity="swish",
|
123 |
+
time_embedding_norm="default",
|
124 |
+
output_scale_factor=1.0,
|
125 |
+
use_in_shortcut=None,
|
126 |
+
use_inflated_groupnorm=False,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pre_norm = pre_norm
|
130 |
+
self.pre_norm = True
|
131 |
+
self.in_channels = in_channels
|
132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.out_channels = out_channels
|
134 |
+
self.use_conv_shortcut = conv_shortcut
|
135 |
+
self.time_embedding_norm = time_embedding_norm
|
136 |
+
self.output_scale_factor = output_scale_factor
|
137 |
+
|
138 |
+
if groups_out is None:
|
139 |
+
groups_out = groups
|
140 |
+
|
141 |
+
assert use_inflated_groupnorm != None
|
142 |
+
if use_inflated_groupnorm:
|
143 |
+
self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
144 |
+
else:
|
145 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
146 |
+
|
147 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
148 |
+
|
149 |
+
if temb_channels is not None:
|
150 |
+
time_emb_proj_out_channels = out_channels
|
151 |
+
# if self.time_embedding_norm == "default":
|
152 |
+
# time_emb_proj_out_channels = out_channels
|
153 |
+
# elif self.time_embedding_norm == "scale_shift":
|
154 |
+
# time_emb_proj_out_channels = out_channels * 2
|
155 |
+
# else:
|
156 |
+
# raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
157 |
+
|
158 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
159 |
+
else:
|
160 |
+
self.time_emb_proj = None
|
161 |
+
|
162 |
+
if self.time_embedding_norm == "scale_shift":
|
163 |
+
self.double_len_linear = torch.nn.Linear(time_emb_proj_out_channels, 2 * time_emb_proj_out_channels)
|
164 |
+
else:
|
165 |
+
self.double_len_linear = None
|
166 |
+
|
167 |
+
if use_inflated_groupnorm:
|
168 |
+
self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
169 |
+
else:
|
170 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
171 |
+
|
172 |
+
self.dropout = torch.nn.Dropout(dropout)
|
173 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
174 |
+
|
175 |
+
if non_linearity == "swish":
|
176 |
+
self.nonlinearity = lambda x: F.silu(x)
|
177 |
+
elif non_linearity == "mish":
|
178 |
+
self.nonlinearity = Mish()
|
179 |
+
elif non_linearity == "silu":
|
180 |
+
self.nonlinearity = nn.SiLU()
|
181 |
+
|
182 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
183 |
+
|
184 |
+
self.conv_shortcut = None
|
185 |
+
if self.use_in_shortcut:
|
186 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
187 |
+
|
188 |
+
def forward(self, input_tensor, temb):
|
189 |
+
hidden_states = input_tensor
|
190 |
+
|
191 |
+
hidden_states = self.norm1(hidden_states)
|
192 |
+
hidden_states = self.nonlinearity(hidden_states)
|
193 |
+
|
194 |
+
hidden_states = self.conv1(hidden_states)
|
195 |
+
|
196 |
+
if temb is not None:
|
197 |
+
if temb.dim() == 2:
|
198 |
+
# input (1, 1280)
|
199 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))
|
200 |
+
temb = temb[:, :, None, None, None] # unsqueeze
|
201 |
+
else:
|
202 |
+
# input (1, 1280, 16)
|
203 |
+
temb = temb.permute(0, 2, 1)
|
204 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))
|
205 |
+
if self.double_len_linear is not None:
|
206 |
+
temb = self.double_len_linear(self.nonlinearity(temb))
|
207 |
+
temb = temb.permute(0, 2, 1)
|
208 |
+
temb = temb[:, :, :, None, None]
|
209 |
+
|
210 |
+
if temb is not None and self.time_embedding_norm == "default":
|
211 |
+
hidden_states = hidden_states + temb
|
212 |
+
|
213 |
+
hidden_states = self.norm2(hidden_states)
|
214 |
+
|
215 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
216 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
217 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
218 |
+
|
219 |
+
hidden_states = self.nonlinearity(hidden_states)
|
220 |
+
|
221 |
+
hidden_states = self.dropout(hidden_states)
|
222 |
+
hidden_states = self.conv2(hidden_states)
|
223 |
+
|
224 |
+
if self.conv_shortcut is not None:
|
225 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
226 |
+
|
227 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
228 |
+
|
229 |
+
return output_tensor
|
230 |
+
|
231 |
+
|
232 |
+
class Mish(torch.nn.Module):
|
233 |
+
def forward(self, hidden_states):
|
234 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
latentsync/models/syncnet.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from einops import rearrange
|
18 |
+
from torch.nn import functional as F
|
19 |
+
from ..utils.util import cosine_loss
|
20 |
+
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from diffusers.models.attention import CrossAttention, FeedForward
|
25 |
+
from diffusers.utils.import_utils import is_xformers_available
|
26 |
+
from einops import rearrange
|
27 |
+
|
28 |
+
|
29 |
+
class SyncNet(nn.Module):
|
30 |
+
def __init__(self, config):
|
31 |
+
super().__init__()
|
32 |
+
self.audio_encoder = DownEncoder2D(
|
33 |
+
in_channels=config["audio_encoder"]["in_channels"],
|
34 |
+
block_out_channels=config["audio_encoder"]["block_out_channels"],
|
35 |
+
downsample_factors=config["audio_encoder"]["downsample_factors"],
|
36 |
+
dropout=config["audio_encoder"]["dropout"],
|
37 |
+
attn_blocks=config["audio_encoder"]["attn_blocks"],
|
38 |
+
)
|
39 |
+
|
40 |
+
self.visual_encoder = DownEncoder2D(
|
41 |
+
in_channels=config["visual_encoder"]["in_channels"],
|
42 |
+
block_out_channels=config["visual_encoder"]["block_out_channels"],
|
43 |
+
downsample_factors=config["visual_encoder"]["downsample_factors"],
|
44 |
+
dropout=config["visual_encoder"]["dropout"],
|
45 |
+
attn_blocks=config["visual_encoder"]["attn_blocks"],
|
46 |
+
)
|
47 |
+
|
48 |
+
self.eval()
|
49 |
+
|
50 |
+
def forward(self, image_sequences, audio_sequences):
|
51 |
+
vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
|
52 |
+
audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
|
53 |
+
|
54 |
+
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
|
55 |
+
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
|
56 |
+
|
57 |
+
# Make them unit vectors
|
58 |
+
vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
|
59 |
+
audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
|
60 |
+
|
61 |
+
return vision_embeds, audio_embeds
|
62 |
+
|
63 |
+
|
64 |
+
class ResnetBlock2D(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
in_channels: int,
|
68 |
+
out_channels: int,
|
69 |
+
dropout: float = 0.0,
|
70 |
+
norm_num_groups: int = 32,
|
71 |
+
eps: float = 1e-6,
|
72 |
+
act_fn: str = "silu",
|
73 |
+
downsample_factor=2,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
|
78 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
79 |
+
|
80 |
+
self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
|
81 |
+
self.dropout = nn.Dropout(dropout)
|
82 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
83 |
+
|
84 |
+
if act_fn == "relu":
|
85 |
+
self.act_fn = nn.ReLU()
|
86 |
+
elif act_fn == "silu":
|
87 |
+
self.act_fn = nn.SiLU()
|
88 |
+
|
89 |
+
if in_channels != out_channels:
|
90 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
91 |
+
else:
|
92 |
+
self.conv_shortcut = None
|
93 |
+
|
94 |
+
if isinstance(downsample_factor, list):
|
95 |
+
downsample_factor = tuple(downsample_factor)
|
96 |
+
|
97 |
+
if downsample_factor == 1:
|
98 |
+
self.downsample_conv = None
|
99 |
+
else:
|
100 |
+
self.downsample_conv = nn.Conv2d(
|
101 |
+
out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
|
102 |
+
)
|
103 |
+
self.pad = (0, 1, 0, 1)
|
104 |
+
if isinstance(downsample_factor, tuple):
|
105 |
+
if downsample_factor[0] == 1:
|
106 |
+
self.pad = (0, 1, 1, 1) # The padding order is from back to front
|
107 |
+
elif downsample_factor[1] == 1:
|
108 |
+
self.pad = (1, 1, 0, 1)
|
109 |
+
|
110 |
+
def forward(self, input_tensor):
|
111 |
+
hidden_states = input_tensor
|
112 |
+
|
113 |
+
hidden_states = self.norm1(hidden_states)
|
114 |
+
hidden_states = self.act_fn(hidden_states)
|
115 |
+
|
116 |
+
hidden_states = self.conv1(hidden_states)
|
117 |
+
hidden_states = self.norm2(hidden_states)
|
118 |
+
hidden_states = self.act_fn(hidden_states)
|
119 |
+
|
120 |
+
hidden_states = self.dropout(hidden_states)
|
121 |
+
hidden_states = self.conv2(hidden_states)
|
122 |
+
|
123 |
+
if self.conv_shortcut is not None:
|
124 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
125 |
+
|
126 |
+
hidden_states += input_tensor
|
127 |
+
|
128 |
+
if self.downsample_conv is not None:
|
129 |
+
hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
|
130 |
+
hidden_states = self.downsample_conv(hidden_states)
|
131 |
+
|
132 |
+
return hidden_states
|
133 |
+
|
134 |
+
|
135 |
+
class AttentionBlock2D(nn.Module):
|
136 |
+
def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
|
137 |
+
super().__init__()
|
138 |
+
if not is_xformers_available():
|
139 |
+
raise ModuleNotFoundError(
|
140 |
+
"You have to install xformers to enable memory efficient attetion", name="xformers"
|
141 |
+
)
|
142 |
+
# inner_dim = dim_head * heads
|
143 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
|
144 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
145 |
+
self.norm3 = nn.LayerNorm(query_dim)
|
146 |
+
|
147 |
+
self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")
|
148 |
+
|
149 |
+
self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
|
150 |
+
self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
|
151 |
+
|
152 |
+
self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
|
153 |
+
self.attn._use_memory_efficient_attention_xformers = True
|
154 |
+
|
155 |
+
def forward(self, hidden_states):
|
156 |
+
assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."
|
157 |
+
|
158 |
+
batch, channel, height, width = hidden_states.shape
|
159 |
+
residual = hidden_states
|
160 |
+
|
161 |
+
hidden_states = self.norm1(hidden_states)
|
162 |
+
hidden_states = self.conv_in(hidden_states)
|
163 |
+
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
|
164 |
+
|
165 |
+
norm_hidden_states = self.norm2(hidden_states)
|
166 |
+
hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
|
167 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
168 |
+
|
169 |
+
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
|
170 |
+
hidden_states = self.conv_out(hidden_states)
|
171 |
+
|
172 |
+
hidden_states = hidden_states + residual
|
173 |
+
return hidden_states
|
174 |
+
|
175 |
+
|
176 |
+
class DownEncoder2D(nn.Module):
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
in_channels=4 * 16,
|
180 |
+
block_out_channels=[64, 128, 256, 256],
|
181 |
+
downsample_factors=[2, 2, 2, 2],
|
182 |
+
layers_per_block=2,
|
183 |
+
norm_num_groups=32,
|
184 |
+
attn_blocks=[1, 1, 1, 1],
|
185 |
+
dropout: float = 0.0,
|
186 |
+
act_fn="silu",
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
self.layers_per_block = layers_per_block
|
190 |
+
|
191 |
+
# in
|
192 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
|
193 |
+
|
194 |
+
# down
|
195 |
+
self.down_blocks = nn.ModuleList([])
|
196 |
+
|
197 |
+
output_channels = block_out_channels[0]
|
198 |
+
for i, block_out_channel in enumerate(block_out_channels):
|
199 |
+
input_channels = output_channels
|
200 |
+
output_channels = block_out_channel
|
201 |
+
# is_final_block = i == len(block_out_channels) - 1
|
202 |
+
|
203 |
+
down_block = ResnetBlock2D(
|
204 |
+
in_channels=input_channels,
|
205 |
+
out_channels=output_channels,
|
206 |
+
downsample_factor=downsample_factors[i],
|
207 |
+
norm_num_groups=norm_num_groups,
|
208 |
+
dropout=dropout,
|
209 |
+
act_fn=act_fn,
|
210 |
+
)
|
211 |
+
|
212 |
+
self.down_blocks.append(down_block)
|
213 |
+
|
214 |
+
if attn_blocks[i] == 1:
|
215 |
+
attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
|
216 |
+
self.down_blocks.append(attention_block)
|
217 |
+
|
218 |
+
# out
|
219 |
+
self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
220 |
+
self.act_fn_out = nn.ReLU()
|
221 |
+
|
222 |
+
def forward(self, hidden_states):
|
223 |
+
hidden_states = self.conv_in(hidden_states)
|
224 |
+
|
225 |
+
# down
|
226 |
+
for down_block in self.down_blocks:
|
227 |
+
hidden_states = down_block(hidden_states)
|
228 |
+
|
229 |
+
# post-process
|
230 |
+
hidden_states = self.norm_out(hidden_states)
|
231 |
+
hidden_states = self.act_fn_out(hidden_states)
|
232 |
+
|
233 |
+
return hidden_states
|
latentsync/models/syncnet_wav2lip.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/primepake/wav2lip_288x288/blob/master/models/syncnetv2.py
|
2 |
+
# The code here is for ablation study.
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class SyncNetWav2Lip(nn.Module):
|
9 |
+
def __init__(self, act_fn="leaky"):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
# input image sequences: (15, 128, 256)
|
13 |
+
self.visual_encoder = nn.Sequential(
|
14 |
+
Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), # (128, 256)
|
15 |
+
Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), # (126, 127)
|
16 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
17 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
18 |
+
Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (63, 64)
|
19 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
20 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
21 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
22 |
+
Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (21, 22)
|
23 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
24 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
25 |
+
Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (11, 11)
|
26 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
27 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
28 |
+
Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (6, 6)
|
29 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
30 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
31 |
+
Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), # (3, 3)
|
32 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
|
33 |
+
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
|
34 |
+
)
|
35 |
+
|
36 |
+
# input audio sequences: (1, 80, 16)
|
37 |
+
self.audio_encoder = nn.Sequential(
|
38 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
|
39 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
40 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
41 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), # (27, 16)
|
42 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
43 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
44 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (9, 6)
|
45 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
46 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
47 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), # (3, 3)
|
48 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
49 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
50 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
|
51 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
52 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
53 |
+
Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
|
54 |
+
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
|
55 |
+
)
|
56 |
+
|
57 |
+
def forward(self, image_sequences, audio_sequences):
|
58 |
+
vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
|
59 |
+
audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
|
60 |
+
|
61 |
+
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
|
62 |
+
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
|
63 |
+
|
64 |
+
# Make them unit vectors
|
65 |
+
vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
|
66 |
+
audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
|
67 |
+
|
68 |
+
return vision_embeds, audio_embeds
|
69 |
+
|
70 |
+
|
71 |
+
class Conv2d(nn.Module):
|
72 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs):
|
73 |
+
super().__init__(*args, **kwargs)
|
74 |
+
self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
|
75 |
+
if act_fn == "relu":
|
76 |
+
self.act_fn = nn.ReLU()
|
77 |
+
elif act_fn == "tanh":
|
78 |
+
self.act_fn = nn.Tanh()
|
79 |
+
elif act_fn == "silu":
|
80 |
+
self.act_fn = nn.SiLU()
|
81 |
+
elif act_fn == "leaky":
|
82 |
+
self.act_fn = nn.LeakyReLU(0.2, inplace=True)
|
83 |
+
|
84 |
+
self.residual = residual
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
out = self.conv_block(x)
|
88 |
+
if self.residual:
|
89 |
+
out += x
|
90 |
+
return self.act_fn(out)
|
latentsync/models/unet.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
import copy
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.modeling_utils import ModelMixin
|
13 |
+
from diffusers import UNet2DConditionModel
|
14 |
+
from diffusers.utils import BaseOutput, logging
|
15 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
16 |
+
from .unet_blocks import (
|
17 |
+
CrossAttnDownBlock3D,
|
18 |
+
CrossAttnUpBlock3D,
|
19 |
+
DownBlock3D,
|
20 |
+
UNetMidBlock3DCrossAttn,
|
21 |
+
UpBlock3D,
|
22 |
+
get_down_block,
|
23 |
+
get_up_block,
|
24 |
+
)
|
25 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
26 |
+
|
27 |
+
from ..utils.util import zero_rank_log
|
28 |
+
from einops import rearrange
|
29 |
+
from .utils import zero_module
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class UNet3DConditionOutput(BaseOutput):
|
37 |
+
sample: torch.FloatTensor
|
38 |
+
|
39 |
+
|
40 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
41 |
+
_supports_gradient_checkpointing = True
|
42 |
+
|
43 |
+
@register_to_config
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
sample_size: Optional[int] = None,
|
47 |
+
in_channels: int = 4,
|
48 |
+
out_channels: int = 4,
|
49 |
+
center_input_sample: bool = False,
|
50 |
+
flip_sin_to_cos: bool = True,
|
51 |
+
freq_shift: int = 0,
|
52 |
+
down_block_types: Tuple[str] = (
|
53 |
+
"CrossAttnDownBlock3D",
|
54 |
+
"CrossAttnDownBlock3D",
|
55 |
+
"CrossAttnDownBlock3D",
|
56 |
+
"DownBlock3D",
|
57 |
+
),
|
58 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
59 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
60 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
61 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
62 |
+
layers_per_block: int = 2,
|
63 |
+
downsample_padding: int = 1,
|
64 |
+
mid_block_scale_factor: float = 1,
|
65 |
+
act_fn: str = "silu",
|
66 |
+
norm_num_groups: int = 32,
|
67 |
+
norm_eps: float = 1e-5,
|
68 |
+
cross_attention_dim: int = 1280,
|
69 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
70 |
+
dual_cross_attention: bool = False,
|
71 |
+
use_linear_projection: bool = False,
|
72 |
+
class_embed_type: Optional[str] = None,
|
73 |
+
num_class_embeds: Optional[int] = None,
|
74 |
+
upcast_attention: bool = False,
|
75 |
+
resnet_time_scale_shift: str = "default",
|
76 |
+
use_inflated_groupnorm=False,
|
77 |
+
# Additional
|
78 |
+
use_motion_module=False,
|
79 |
+
motion_module_resolutions=(1, 2, 4, 8),
|
80 |
+
motion_module_mid_block=False,
|
81 |
+
motion_module_decoder_only=False,
|
82 |
+
motion_module_type=None,
|
83 |
+
motion_module_kwargs={},
|
84 |
+
unet_use_cross_frame_attention=False,
|
85 |
+
unet_use_temporal_attention=False,
|
86 |
+
add_audio_layer=False,
|
87 |
+
audio_condition_method: str = "cross_attn",
|
88 |
+
custom_audio_layer=False,
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.sample_size = sample_size
|
93 |
+
time_embed_dim = block_out_channels[0] * 4
|
94 |
+
self.use_motion_module = use_motion_module
|
95 |
+
self.add_audio_layer = add_audio_layer
|
96 |
+
|
97 |
+
self.conv_in = zero_module(InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)))
|
98 |
+
|
99 |
+
# time
|
100 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
101 |
+
timestep_input_dim = block_out_channels[0]
|
102 |
+
|
103 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
104 |
+
|
105 |
+
# class embedding
|
106 |
+
if class_embed_type is None and num_class_embeds is not None:
|
107 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
108 |
+
elif class_embed_type == "timestep":
|
109 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
110 |
+
elif class_embed_type == "identity":
|
111 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
112 |
+
else:
|
113 |
+
self.class_embedding = None
|
114 |
+
|
115 |
+
self.down_blocks = nn.ModuleList([])
|
116 |
+
self.mid_block = None
|
117 |
+
self.up_blocks = nn.ModuleList([])
|
118 |
+
|
119 |
+
if isinstance(only_cross_attention, bool):
|
120 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
121 |
+
|
122 |
+
if isinstance(attention_head_dim, int):
|
123 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
124 |
+
|
125 |
+
# down
|
126 |
+
output_channel = block_out_channels[0]
|
127 |
+
for i, down_block_type in enumerate(down_block_types):
|
128 |
+
res = 2**i
|
129 |
+
input_channel = output_channel
|
130 |
+
output_channel = block_out_channels[i]
|
131 |
+
is_final_block = i == len(block_out_channels) - 1
|
132 |
+
|
133 |
+
down_block = get_down_block(
|
134 |
+
down_block_type,
|
135 |
+
num_layers=layers_per_block,
|
136 |
+
in_channels=input_channel,
|
137 |
+
out_channels=output_channel,
|
138 |
+
temb_channels=time_embed_dim,
|
139 |
+
add_downsample=not is_final_block,
|
140 |
+
resnet_eps=norm_eps,
|
141 |
+
resnet_act_fn=act_fn,
|
142 |
+
resnet_groups=norm_num_groups,
|
143 |
+
cross_attention_dim=cross_attention_dim,
|
144 |
+
attn_num_head_channels=attention_head_dim[i],
|
145 |
+
downsample_padding=downsample_padding,
|
146 |
+
dual_cross_attention=dual_cross_attention,
|
147 |
+
use_linear_projection=use_linear_projection,
|
148 |
+
only_cross_attention=only_cross_attention[i],
|
149 |
+
upcast_attention=upcast_attention,
|
150 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
151 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
152 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
153 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
154 |
+
use_motion_module=use_motion_module
|
155 |
+
and (res in motion_module_resolutions)
|
156 |
+
and (not motion_module_decoder_only),
|
157 |
+
motion_module_type=motion_module_type,
|
158 |
+
motion_module_kwargs=motion_module_kwargs,
|
159 |
+
add_audio_layer=add_audio_layer,
|
160 |
+
audio_condition_method=audio_condition_method,
|
161 |
+
custom_audio_layer=custom_audio_layer,
|
162 |
+
)
|
163 |
+
self.down_blocks.append(down_block)
|
164 |
+
|
165 |
+
# mid
|
166 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
167 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
168 |
+
in_channels=block_out_channels[-1],
|
169 |
+
temb_channels=time_embed_dim,
|
170 |
+
resnet_eps=norm_eps,
|
171 |
+
resnet_act_fn=act_fn,
|
172 |
+
output_scale_factor=mid_block_scale_factor,
|
173 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
174 |
+
cross_attention_dim=cross_attention_dim,
|
175 |
+
attn_num_head_channels=attention_head_dim[-1],
|
176 |
+
resnet_groups=norm_num_groups,
|
177 |
+
dual_cross_attention=dual_cross_attention,
|
178 |
+
use_linear_projection=use_linear_projection,
|
179 |
+
upcast_attention=upcast_attention,
|
180 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
181 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
182 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
183 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
184 |
+
motion_module_type=motion_module_type,
|
185 |
+
motion_module_kwargs=motion_module_kwargs,
|
186 |
+
add_audio_layer=add_audio_layer,
|
187 |
+
audio_condition_method=audio_condition_method,
|
188 |
+
custom_audio_layer=custom_audio_layer,
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
192 |
+
|
193 |
+
# count how many layers upsample the videos
|
194 |
+
self.num_upsamplers = 0
|
195 |
+
|
196 |
+
# up
|
197 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
198 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
199 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
200 |
+
output_channel = reversed_block_out_channels[0]
|
201 |
+
for i, up_block_type in enumerate(up_block_types):
|
202 |
+
res = 2 ** (3 - i)
|
203 |
+
is_final_block = i == len(block_out_channels) - 1
|
204 |
+
|
205 |
+
prev_output_channel = output_channel
|
206 |
+
output_channel = reversed_block_out_channels[i]
|
207 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
208 |
+
|
209 |
+
# add upsample block for all BUT final layer
|
210 |
+
if not is_final_block:
|
211 |
+
add_upsample = True
|
212 |
+
self.num_upsamplers += 1
|
213 |
+
else:
|
214 |
+
add_upsample = False
|
215 |
+
|
216 |
+
up_block = get_up_block(
|
217 |
+
up_block_type,
|
218 |
+
num_layers=layers_per_block + 1,
|
219 |
+
in_channels=input_channel,
|
220 |
+
out_channels=output_channel,
|
221 |
+
prev_output_channel=prev_output_channel,
|
222 |
+
temb_channels=time_embed_dim,
|
223 |
+
add_upsample=add_upsample,
|
224 |
+
resnet_eps=norm_eps,
|
225 |
+
resnet_act_fn=act_fn,
|
226 |
+
resnet_groups=norm_num_groups,
|
227 |
+
cross_attention_dim=cross_attention_dim,
|
228 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
229 |
+
dual_cross_attention=dual_cross_attention,
|
230 |
+
use_linear_projection=use_linear_projection,
|
231 |
+
only_cross_attention=only_cross_attention[i],
|
232 |
+
upcast_attention=upcast_attention,
|
233 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
234 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
235 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
236 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
237 |
+
use_motion_module=use_motion_module and (res in motion_module_resolutions),
|
238 |
+
motion_module_type=motion_module_type,
|
239 |
+
motion_module_kwargs=motion_module_kwargs,
|
240 |
+
add_audio_layer=add_audio_layer,
|
241 |
+
audio_condition_method=audio_condition_method,
|
242 |
+
custom_audio_layer=custom_audio_layer,
|
243 |
+
)
|
244 |
+
self.up_blocks.append(up_block)
|
245 |
+
prev_output_channel = output_channel
|
246 |
+
|
247 |
+
# out
|
248 |
+
if use_inflated_groupnorm:
|
249 |
+
self.conv_norm_out = InflatedGroupNorm(
|
250 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
self.conv_norm_out = nn.GroupNorm(
|
254 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
255 |
+
)
|
256 |
+
self.conv_act = nn.SiLU()
|
257 |
+
|
258 |
+
self.conv_out = zero_module(InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1))
|
259 |
+
|
260 |
+
def set_attention_slice(self, slice_size):
|
261 |
+
r"""
|
262 |
+
Enable sliced attention computation.
|
263 |
+
|
264 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
265 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
269 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
270 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
271 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
272 |
+
must be a multiple of `slice_size`.
|
273 |
+
"""
|
274 |
+
sliceable_head_dims = []
|
275 |
+
|
276 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
277 |
+
if hasattr(module, "set_attention_slice"):
|
278 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
279 |
+
|
280 |
+
for child in module.children():
|
281 |
+
fn_recursive_retrieve_slicable_dims(child)
|
282 |
+
|
283 |
+
# retrieve number of attention layers
|
284 |
+
for module in self.children():
|
285 |
+
fn_recursive_retrieve_slicable_dims(module)
|
286 |
+
|
287 |
+
num_slicable_layers = len(sliceable_head_dims)
|
288 |
+
|
289 |
+
if slice_size == "auto":
|
290 |
+
# half the attention head size is usually a good trade-off between
|
291 |
+
# speed and memory
|
292 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
293 |
+
elif slice_size == "max":
|
294 |
+
# make smallest slice possible
|
295 |
+
slice_size = num_slicable_layers * [1]
|
296 |
+
|
297 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
298 |
+
|
299 |
+
if len(slice_size) != len(sliceable_head_dims):
|
300 |
+
raise ValueError(
|
301 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
302 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
303 |
+
)
|
304 |
+
|
305 |
+
for i in range(len(slice_size)):
|
306 |
+
size = slice_size[i]
|
307 |
+
dim = sliceable_head_dims[i]
|
308 |
+
if size is not None and size > dim:
|
309 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
310 |
+
|
311 |
+
# Recursively walk through all the children.
|
312 |
+
# Any children which exposes the set_attention_slice method
|
313 |
+
# gets the message
|
314 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
315 |
+
if hasattr(module, "set_attention_slice"):
|
316 |
+
module.set_attention_slice(slice_size.pop())
|
317 |
+
|
318 |
+
for child in module.children():
|
319 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
320 |
+
|
321 |
+
reversed_slice_size = list(reversed(slice_size))
|
322 |
+
for module in self.children():
|
323 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
324 |
+
|
325 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
326 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
327 |
+
module.gradient_checkpointing = value
|
328 |
+
|
329 |
+
def forward(
|
330 |
+
self,
|
331 |
+
sample: torch.FloatTensor,
|
332 |
+
timestep: Union[torch.Tensor, float, int],
|
333 |
+
encoder_hidden_states: torch.Tensor,
|
334 |
+
class_labels: Optional[torch.Tensor] = None,
|
335 |
+
attention_mask: Optional[torch.Tensor] = None,
|
336 |
+
# support controlnet
|
337 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
338 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
339 |
+
return_dict: bool = True,
|
340 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
341 |
+
r"""
|
342 |
+
Args:
|
343 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
344 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
345 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
346 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
347 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
351 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
352 |
+
returning a tuple, the first element is the sample tensor.
|
353 |
+
"""
|
354 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
355 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
356 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
357 |
+
# on the fly if necessary.
|
358 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
359 |
+
|
360 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
361 |
+
forward_upsample_size = False
|
362 |
+
upsample_size = None
|
363 |
+
|
364 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
365 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
366 |
+
forward_upsample_size = True
|
367 |
+
|
368 |
+
# prepare attention_mask
|
369 |
+
if attention_mask is not None:
|
370 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
371 |
+
attention_mask = attention_mask.unsqueeze(1)
|
372 |
+
|
373 |
+
# center input if necessary
|
374 |
+
if self.config.center_input_sample:
|
375 |
+
sample = 2 * sample - 1.0
|
376 |
+
|
377 |
+
# time
|
378 |
+
timesteps = timestep
|
379 |
+
if not torch.is_tensor(timesteps):
|
380 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
381 |
+
is_mps = sample.device.type == "mps"
|
382 |
+
if isinstance(timestep, float):
|
383 |
+
dtype = torch.float32 if is_mps else torch.float64
|
384 |
+
else:
|
385 |
+
dtype = torch.int32 if is_mps else torch.int64
|
386 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
387 |
+
elif len(timesteps.shape) == 0:
|
388 |
+
timesteps = timesteps[None].to(sample.device)
|
389 |
+
|
390 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
391 |
+
timesteps = timesteps.expand(sample.shape[0])
|
392 |
+
|
393 |
+
t_emb = self.time_proj(timesteps)
|
394 |
+
|
395 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
396 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
397 |
+
# there might be better ways to encapsulate this.
|
398 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
399 |
+
emb = self.time_embedding(t_emb)
|
400 |
+
|
401 |
+
if self.class_embedding is not None:
|
402 |
+
if class_labels is None:
|
403 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
404 |
+
|
405 |
+
if self.config.class_embed_type == "timestep":
|
406 |
+
class_labels = self.time_proj(class_labels)
|
407 |
+
|
408 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
409 |
+
emb = emb + class_emb
|
410 |
+
|
411 |
+
# pre-process
|
412 |
+
sample = self.conv_in(sample)
|
413 |
+
|
414 |
+
# down
|
415 |
+
down_block_res_samples = (sample,)
|
416 |
+
for downsample_block in self.down_blocks:
|
417 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
418 |
+
sample, res_samples = downsample_block(
|
419 |
+
hidden_states=sample,
|
420 |
+
temb=emb,
|
421 |
+
encoder_hidden_states=encoder_hidden_states,
|
422 |
+
attention_mask=attention_mask,
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
sample, res_samples = downsample_block(
|
426 |
+
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
|
427 |
+
)
|
428 |
+
|
429 |
+
down_block_res_samples += res_samples
|
430 |
+
|
431 |
+
# support controlnet
|
432 |
+
down_block_res_samples = list(down_block_res_samples)
|
433 |
+
if down_block_additional_residuals is not None:
|
434 |
+
for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
|
435 |
+
if down_block_additional_residual.dim() == 4: # boardcast
|
436 |
+
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
|
437 |
+
down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
|
438 |
+
|
439 |
+
# mid
|
440 |
+
sample = self.mid_block(
|
441 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
442 |
+
)
|
443 |
+
|
444 |
+
# support controlnet
|
445 |
+
if mid_block_additional_residual is not None:
|
446 |
+
if mid_block_additional_residual.dim() == 4: # boardcast
|
447 |
+
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
|
448 |
+
sample = sample + mid_block_additional_residual
|
449 |
+
|
450 |
+
# up
|
451 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
452 |
+
is_final_block = i == len(self.up_blocks) - 1
|
453 |
+
|
454 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
455 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
456 |
+
|
457 |
+
# if we have not reached the final block and need to forward the
|
458 |
+
# upsample size, we do it here
|
459 |
+
if not is_final_block and forward_upsample_size:
|
460 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
461 |
+
|
462 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
463 |
+
sample = upsample_block(
|
464 |
+
hidden_states=sample,
|
465 |
+
temb=emb,
|
466 |
+
res_hidden_states_tuple=res_samples,
|
467 |
+
encoder_hidden_states=encoder_hidden_states,
|
468 |
+
upsample_size=upsample_size,
|
469 |
+
attention_mask=attention_mask,
|
470 |
+
)
|
471 |
+
else:
|
472 |
+
sample = upsample_block(
|
473 |
+
hidden_states=sample,
|
474 |
+
temb=emb,
|
475 |
+
res_hidden_states_tuple=res_samples,
|
476 |
+
upsample_size=upsample_size,
|
477 |
+
encoder_hidden_states=encoder_hidden_states,
|
478 |
+
)
|
479 |
+
|
480 |
+
# post-process
|
481 |
+
sample = self.conv_norm_out(sample)
|
482 |
+
sample = self.conv_act(sample)
|
483 |
+
sample = self.conv_out(sample)
|
484 |
+
|
485 |
+
if not return_dict:
|
486 |
+
return (sample,)
|
487 |
+
|
488 |
+
return UNet3DConditionOutput(sample=sample)
|
489 |
+
|
490 |
+
def load_state_dict(self, state_dict, strict=True):
|
491 |
+
# If the loaded checkpoint's in_channels or out_channels are different from config
|
492 |
+
temp_state_dict = copy.deepcopy(state_dict)
|
493 |
+
if temp_state_dict["conv_in.weight"].shape[1] != self.config.in_channels:
|
494 |
+
del temp_state_dict["conv_in.weight"]
|
495 |
+
del temp_state_dict["conv_in.bias"]
|
496 |
+
if temp_state_dict["conv_out.weight"].shape[0] != self.config.out_channels:
|
497 |
+
del temp_state_dict["conv_out.weight"]
|
498 |
+
del temp_state_dict["conv_out.bias"]
|
499 |
+
|
500 |
+
# If the loaded checkpoint's cross_attention_dim is different from config
|
501 |
+
keys_to_remove = []
|
502 |
+
for key in temp_state_dict:
|
503 |
+
if "audio_cross_attn.attn.to_k." in key or "audio_cross_attn.attn.to_v." in key:
|
504 |
+
if temp_state_dict[key].shape[1] != self.config.cross_attention_dim:
|
505 |
+
keys_to_remove.append(key)
|
506 |
+
|
507 |
+
for key in keys_to_remove:
|
508 |
+
del temp_state_dict[key]
|
509 |
+
|
510 |
+
return super().load_state_dict(state_dict=temp_state_dict, strict=strict)
|
511 |
+
|
512 |
+
@classmethod
|
513 |
+
def from_pretrained(cls, model_config: dict, ckpt_path: str, device="cpu"):
|
514 |
+
unet = cls.from_config(model_config).to(device)
|
515 |
+
if ckpt_path != "":
|
516 |
+
zero_rank_log(logger, f"Load from checkpoint: {ckpt_path}")
|
517 |
+
ckpt = torch.load(ckpt_path, map_location=device)
|
518 |
+
if "global_step" in ckpt:
|
519 |
+
zero_rank_log(logger, f"resume from global_step: {ckpt['global_step']}")
|
520 |
+
resume_global_step = ckpt["global_step"]
|
521 |
+
else:
|
522 |
+
resume_global_step = 0
|
523 |
+
state_dict = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
|
524 |
+
unet.load_state_dict(state_dict, strict=False)
|
525 |
+
else:
|
526 |
+
resume_global_step = 0
|
527 |
+
|
528 |
+
return unet, resume_global_step
|
latentsync/models/unet_blocks.py
ADDED
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
from .motion_module import get_motion_module
|
9 |
+
|
10 |
+
|
11 |
+
def get_down_block(
|
12 |
+
down_block_type,
|
13 |
+
num_layers,
|
14 |
+
in_channels,
|
15 |
+
out_channels,
|
16 |
+
temb_channels,
|
17 |
+
add_downsample,
|
18 |
+
resnet_eps,
|
19 |
+
resnet_act_fn,
|
20 |
+
attn_num_head_channels,
|
21 |
+
resnet_groups=None,
|
22 |
+
cross_attention_dim=None,
|
23 |
+
downsample_padding=None,
|
24 |
+
dual_cross_attention=False,
|
25 |
+
use_linear_projection=False,
|
26 |
+
only_cross_attention=False,
|
27 |
+
upcast_attention=False,
|
28 |
+
resnet_time_scale_shift="default",
|
29 |
+
unet_use_cross_frame_attention=False,
|
30 |
+
unet_use_temporal_attention=False,
|
31 |
+
use_inflated_groupnorm=False,
|
32 |
+
use_motion_module=None,
|
33 |
+
motion_module_type=None,
|
34 |
+
motion_module_kwargs=None,
|
35 |
+
add_audio_layer=False,
|
36 |
+
audio_condition_method="cross_attn",
|
37 |
+
custom_audio_layer=False,
|
38 |
+
):
|
39 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
40 |
+
if down_block_type == "DownBlock3D":
|
41 |
+
return DownBlock3D(
|
42 |
+
num_layers=num_layers,
|
43 |
+
in_channels=in_channels,
|
44 |
+
out_channels=out_channels,
|
45 |
+
temb_channels=temb_channels,
|
46 |
+
add_downsample=add_downsample,
|
47 |
+
resnet_eps=resnet_eps,
|
48 |
+
resnet_act_fn=resnet_act_fn,
|
49 |
+
resnet_groups=resnet_groups,
|
50 |
+
downsample_padding=downsample_padding,
|
51 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
52 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
53 |
+
use_motion_module=use_motion_module,
|
54 |
+
motion_module_type=motion_module_type,
|
55 |
+
motion_module_kwargs=motion_module_kwargs,
|
56 |
+
)
|
57 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
58 |
+
if cross_attention_dim is None:
|
59 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
60 |
+
return CrossAttnDownBlock3D(
|
61 |
+
num_layers=num_layers,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=out_channels,
|
64 |
+
temb_channels=temb_channels,
|
65 |
+
add_downsample=add_downsample,
|
66 |
+
resnet_eps=resnet_eps,
|
67 |
+
resnet_act_fn=resnet_act_fn,
|
68 |
+
resnet_groups=resnet_groups,
|
69 |
+
downsample_padding=downsample_padding,
|
70 |
+
cross_attention_dim=cross_attention_dim,
|
71 |
+
attn_num_head_channels=attn_num_head_channels,
|
72 |
+
dual_cross_attention=dual_cross_attention,
|
73 |
+
use_linear_projection=use_linear_projection,
|
74 |
+
only_cross_attention=only_cross_attention,
|
75 |
+
upcast_attention=upcast_attention,
|
76 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
77 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
78 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
79 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
80 |
+
use_motion_module=use_motion_module,
|
81 |
+
motion_module_type=motion_module_type,
|
82 |
+
motion_module_kwargs=motion_module_kwargs,
|
83 |
+
add_audio_layer=add_audio_layer,
|
84 |
+
audio_condition_method=audio_condition_method,
|
85 |
+
custom_audio_layer=custom_audio_layer,
|
86 |
+
)
|
87 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
88 |
+
|
89 |
+
|
90 |
+
def get_up_block(
|
91 |
+
up_block_type,
|
92 |
+
num_layers,
|
93 |
+
in_channels,
|
94 |
+
out_channels,
|
95 |
+
prev_output_channel,
|
96 |
+
temb_channels,
|
97 |
+
add_upsample,
|
98 |
+
resnet_eps,
|
99 |
+
resnet_act_fn,
|
100 |
+
attn_num_head_channels,
|
101 |
+
resnet_groups=None,
|
102 |
+
cross_attention_dim=None,
|
103 |
+
dual_cross_attention=False,
|
104 |
+
use_linear_projection=False,
|
105 |
+
only_cross_attention=False,
|
106 |
+
upcast_attention=False,
|
107 |
+
resnet_time_scale_shift="default",
|
108 |
+
unet_use_cross_frame_attention=False,
|
109 |
+
unet_use_temporal_attention=False,
|
110 |
+
use_inflated_groupnorm=False,
|
111 |
+
use_motion_module=None,
|
112 |
+
motion_module_type=None,
|
113 |
+
motion_module_kwargs=None,
|
114 |
+
add_audio_layer=False,
|
115 |
+
audio_condition_method="cross_attn",
|
116 |
+
custom_audio_layer=False,
|
117 |
+
):
|
118 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
119 |
+
if up_block_type == "UpBlock3D":
|
120 |
+
return UpBlock3D(
|
121 |
+
num_layers=num_layers,
|
122 |
+
in_channels=in_channels,
|
123 |
+
out_channels=out_channels,
|
124 |
+
prev_output_channel=prev_output_channel,
|
125 |
+
temb_channels=temb_channels,
|
126 |
+
add_upsample=add_upsample,
|
127 |
+
resnet_eps=resnet_eps,
|
128 |
+
resnet_act_fn=resnet_act_fn,
|
129 |
+
resnet_groups=resnet_groups,
|
130 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
131 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
132 |
+
use_motion_module=use_motion_module,
|
133 |
+
motion_module_type=motion_module_type,
|
134 |
+
motion_module_kwargs=motion_module_kwargs,
|
135 |
+
)
|
136 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
137 |
+
if cross_attention_dim is None:
|
138 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
139 |
+
return CrossAttnUpBlock3D(
|
140 |
+
num_layers=num_layers,
|
141 |
+
in_channels=in_channels,
|
142 |
+
out_channels=out_channels,
|
143 |
+
prev_output_channel=prev_output_channel,
|
144 |
+
temb_channels=temb_channels,
|
145 |
+
add_upsample=add_upsample,
|
146 |
+
resnet_eps=resnet_eps,
|
147 |
+
resnet_act_fn=resnet_act_fn,
|
148 |
+
resnet_groups=resnet_groups,
|
149 |
+
cross_attention_dim=cross_attention_dim,
|
150 |
+
attn_num_head_channels=attn_num_head_channels,
|
151 |
+
dual_cross_attention=dual_cross_attention,
|
152 |
+
use_linear_projection=use_linear_projection,
|
153 |
+
only_cross_attention=only_cross_attention,
|
154 |
+
upcast_attention=upcast_attention,
|
155 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
156 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
157 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
158 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
159 |
+
use_motion_module=use_motion_module,
|
160 |
+
motion_module_type=motion_module_type,
|
161 |
+
motion_module_kwargs=motion_module_kwargs,
|
162 |
+
add_audio_layer=add_audio_layer,
|
163 |
+
audio_condition_method=audio_condition_method,
|
164 |
+
custom_audio_layer=custom_audio_layer,
|
165 |
+
)
|
166 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
167 |
+
|
168 |
+
|
169 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
in_channels: int,
|
173 |
+
temb_channels: int,
|
174 |
+
dropout: float = 0.0,
|
175 |
+
num_layers: int = 1,
|
176 |
+
resnet_eps: float = 1e-6,
|
177 |
+
resnet_time_scale_shift: str = "default",
|
178 |
+
resnet_act_fn: str = "swish",
|
179 |
+
resnet_groups: int = 32,
|
180 |
+
resnet_pre_norm: bool = True,
|
181 |
+
attn_num_head_channels=1,
|
182 |
+
output_scale_factor=1.0,
|
183 |
+
cross_attention_dim=1280,
|
184 |
+
dual_cross_attention=False,
|
185 |
+
use_linear_projection=False,
|
186 |
+
upcast_attention=False,
|
187 |
+
unet_use_cross_frame_attention=False,
|
188 |
+
unet_use_temporal_attention=False,
|
189 |
+
use_inflated_groupnorm=False,
|
190 |
+
use_motion_module=None,
|
191 |
+
motion_module_type=None,
|
192 |
+
motion_module_kwargs=None,
|
193 |
+
add_audio_layer=False,
|
194 |
+
audio_condition_method="cross_attn",
|
195 |
+
custom_audio_layer: bool = False,
|
196 |
+
):
|
197 |
+
super().__init__()
|
198 |
+
|
199 |
+
self.has_cross_attention = True
|
200 |
+
self.attn_num_head_channels = attn_num_head_channels
|
201 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
202 |
+
|
203 |
+
# there is always at least one resnet
|
204 |
+
resnets = [
|
205 |
+
ResnetBlock3D(
|
206 |
+
in_channels=in_channels,
|
207 |
+
out_channels=in_channels,
|
208 |
+
temb_channels=temb_channels,
|
209 |
+
eps=resnet_eps,
|
210 |
+
groups=resnet_groups,
|
211 |
+
dropout=dropout,
|
212 |
+
time_embedding_norm=resnet_time_scale_shift,
|
213 |
+
non_linearity=resnet_act_fn,
|
214 |
+
output_scale_factor=output_scale_factor,
|
215 |
+
pre_norm=resnet_pre_norm,
|
216 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
217 |
+
)
|
218 |
+
]
|
219 |
+
attentions = []
|
220 |
+
audio_attentions = []
|
221 |
+
motion_modules = []
|
222 |
+
|
223 |
+
for _ in range(num_layers):
|
224 |
+
if dual_cross_attention:
|
225 |
+
raise NotImplementedError
|
226 |
+
attentions.append(
|
227 |
+
Transformer3DModel(
|
228 |
+
attn_num_head_channels,
|
229 |
+
in_channels // attn_num_head_channels,
|
230 |
+
in_channels=in_channels,
|
231 |
+
num_layers=1,
|
232 |
+
cross_attention_dim=cross_attention_dim,
|
233 |
+
norm_num_groups=resnet_groups,
|
234 |
+
use_linear_projection=use_linear_projection,
|
235 |
+
upcast_attention=upcast_attention,
|
236 |
+
use_motion_module=use_motion_module,
|
237 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
238 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
239 |
+
add_audio_layer=add_audio_layer,
|
240 |
+
audio_condition_method=audio_condition_method,
|
241 |
+
)
|
242 |
+
)
|
243 |
+
audio_attentions.append(
|
244 |
+
Transformer3DModel(
|
245 |
+
attn_num_head_channels,
|
246 |
+
in_channels // attn_num_head_channels,
|
247 |
+
in_channels=in_channels,
|
248 |
+
num_layers=1,
|
249 |
+
cross_attention_dim=cross_attention_dim,
|
250 |
+
norm_num_groups=resnet_groups,
|
251 |
+
use_linear_projection=use_linear_projection,
|
252 |
+
upcast_attention=upcast_attention,
|
253 |
+
use_motion_module=use_motion_module,
|
254 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
255 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
256 |
+
add_audio_layer=add_audio_layer,
|
257 |
+
audio_condition_method=audio_condition_method,
|
258 |
+
custom_audio_layer=True,
|
259 |
+
)
|
260 |
+
if custom_audio_layer
|
261 |
+
else None
|
262 |
+
)
|
263 |
+
motion_modules.append(
|
264 |
+
get_motion_module(
|
265 |
+
in_channels=in_channels,
|
266 |
+
motion_module_type=motion_module_type,
|
267 |
+
motion_module_kwargs=motion_module_kwargs,
|
268 |
+
)
|
269 |
+
if use_motion_module
|
270 |
+
else None
|
271 |
+
)
|
272 |
+
resnets.append(
|
273 |
+
ResnetBlock3D(
|
274 |
+
in_channels=in_channels,
|
275 |
+
out_channels=in_channels,
|
276 |
+
temb_channels=temb_channels,
|
277 |
+
eps=resnet_eps,
|
278 |
+
groups=resnet_groups,
|
279 |
+
dropout=dropout,
|
280 |
+
time_embedding_norm=resnet_time_scale_shift,
|
281 |
+
non_linearity=resnet_act_fn,
|
282 |
+
output_scale_factor=output_scale_factor,
|
283 |
+
pre_norm=resnet_pre_norm,
|
284 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
285 |
+
)
|
286 |
+
)
|
287 |
+
|
288 |
+
self.attentions = nn.ModuleList(attentions)
|
289 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
290 |
+
self.resnets = nn.ModuleList(resnets)
|
291 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
292 |
+
|
293 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
294 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
295 |
+
for attn, audio_attn, resnet, motion_module in zip(
|
296 |
+
self.attentions, self.audio_attentions, self.resnets[1:], self.motion_modules
|
297 |
+
):
|
298 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
299 |
+
hidden_states = (
|
300 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
301 |
+
if audio_attn is not None
|
302 |
+
else hidden_states
|
303 |
+
)
|
304 |
+
hidden_states = (
|
305 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
306 |
+
if motion_module is not None
|
307 |
+
else hidden_states
|
308 |
+
)
|
309 |
+
hidden_states = resnet(hidden_states, temb)
|
310 |
+
|
311 |
+
return hidden_states
|
312 |
+
|
313 |
+
|
314 |
+
class CrossAttnDownBlock3D(nn.Module):
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
in_channels: int,
|
318 |
+
out_channels: int,
|
319 |
+
temb_channels: int,
|
320 |
+
dropout: float = 0.0,
|
321 |
+
num_layers: int = 1,
|
322 |
+
resnet_eps: float = 1e-6,
|
323 |
+
resnet_time_scale_shift: str = "default",
|
324 |
+
resnet_act_fn: str = "swish",
|
325 |
+
resnet_groups: int = 32,
|
326 |
+
resnet_pre_norm: bool = True,
|
327 |
+
attn_num_head_channels=1,
|
328 |
+
cross_attention_dim=1280,
|
329 |
+
output_scale_factor=1.0,
|
330 |
+
downsample_padding=1,
|
331 |
+
add_downsample=True,
|
332 |
+
dual_cross_attention=False,
|
333 |
+
use_linear_projection=False,
|
334 |
+
only_cross_attention=False,
|
335 |
+
upcast_attention=False,
|
336 |
+
unet_use_cross_frame_attention=False,
|
337 |
+
unet_use_temporal_attention=False,
|
338 |
+
use_inflated_groupnorm=False,
|
339 |
+
use_motion_module=None,
|
340 |
+
motion_module_type=None,
|
341 |
+
motion_module_kwargs=None,
|
342 |
+
add_audio_layer=False,
|
343 |
+
audio_condition_method="cross_attn",
|
344 |
+
custom_audio_layer: bool = False,
|
345 |
+
):
|
346 |
+
super().__init__()
|
347 |
+
resnets = []
|
348 |
+
attentions = []
|
349 |
+
audio_attentions = []
|
350 |
+
motion_modules = []
|
351 |
+
|
352 |
+
self.has_cross_attention = True
|
353 |
+
self.attn_num_head_channels = attn_num_head_channels
|
354 |
+
|
355 |
+
for i in range(num_layers):
|
356 |
+
in_channels = in_channels if i == 0 else out_channels
|
357 |
+
resnets.append(
|
358 |
+
ResnetBlock3D(
|
359 |
+
in_channels=in_channels,
|
360 |
+
out_channels=out_channels,
|
361 |
+
temb_channels=temb_channels,
|
362 |
+
eps=resnet_eps,
|
363 |
+
groups=resnet_groups,
|
364 |
+
dropout=dropout,
|
365 |
+
time_embedding_norm=resnet_time_scale_shift,
|
366 |
+
non_linearity=resnet_act_fn,
|
367 |
+
output_scale_factor=output_scale_factor,
|
368 |
+
pre_norm=resnet_pre_norm,
|
369 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
if dual_cross_attention:
|
373 |
+
raise NotImplementedError
|
374 |
+
attentions.append(
|
375 |
+
Transformer3DModel(
|
376 |
+
attn_num_head_channels,
|
377 |
+
out_channels // attn_num_head_channels,
|
378 |
+
in_channels=out_channels,
|
379 |
+
num_layers=1,
|
380 |
+
cross_attention_dim=cross_attention_dim,
|
381 |
+
norm_num_groups=resnet_groups,
|
382 |
+
use_linear_projection=use_linear_projection,
|
383 |
+
only_cross_attention=only_cross_attention,
|
384 |
+
upcast_attention=upcast_attention,
|
385 |
+
use_motion_module=use_motion_module,
|
386 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
387 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
388 |
+
add_audio_layer=add_audio_layer,
|
389 |
+
audio_condition_method=audio_condition_method,
|
390 |
+
)
|
391 |
+
)
|
392 |
+
audio_attentions.append(
|
393 |
+
Transformer3DModel(
|
394 |
+
attn_num_head_channels,
|
395 |
+
out_channels // attn_num_head_channels,
|
396 |
+
in_channels=out_channels,
|
397 |
+
num_layers=1,
|
398 |
+
cross_attention_dim=cross_attention_dim,
|
399 |
+
norm_num_groups=resnet_groups,
|
400 |
+
use_linear_projection=use_linear_projection,
|
401 |
+
only_cross_attention=only_cross_attention,
|
402 |
+
upcast_attention=upcast_attention,
|
403 |
+
use_motion_module=use_motion_module,
|
404 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
405 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
406 |
+
add_audio_layer=add_audio_layer,
|
407 |
+
audio_condition_method=audio_condition_method,
|
408 |
+
custom_audio_layer=True,
|
409 |
+
)
|
410 |
+
if custom_audio_layer
|
411 |
+
else None
|
412 |
+
)
|
413 |
+
motion_modules.append(
|
414 |
+
get_motion_module(
|
415 |
+
in_channels=out_channels,
|
416 |
+
motion_module_type=motion_module_type,
|
417 |
+
motion_module_kwargs=motion_module_kwargs,
|
418 |
+
)
|
419 |
+
if use_motion_module
|
420 |
+
else None
|
421 |
+
)
|
422 |
+
|
423 |
+
self.attentions = nn.ModuleList(attentions)
|
424 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
425 |
+
self.resnets = nn.ModuleList(resnets)
|
426 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
427 |
+
|
428 |
+
if add_downsample:
|
429 |
+
self.downsamplers = nn.ModuleList(
|
430 |
+
[
|
431 |
+
Downsample3D(
|
432 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
433 |
+
)
|
434 |
+
]
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
self.downsamplers = None
|
438 |
+
|
439 |
+
self.gradient_checkpointing = False
|
440 |
+
|
441 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
442 |
+
output_states = ()
|
443 |
+
|
444 |
+
for resnet, attn, audio_attn, motion_module in zip(
|
445 |
+
self.resnets, self.attentions, self.audio_attentions, self.motion_modules
|
446 |
+
):
|
447 |
+
if self.training and self.gradient_checkpointing:
|
448 |
+
|
449 |
+
def create_custom_forward(module, return_dict=None):
|
450 |
+
def custom_forward(*inputs):
|
451 |
+
if return_dict is not None:
|
452 |
+
return module(*inputs, return_dict=return_dict)
|
453 |
+
else:
|
454 |
+
return module(*inputs)
|
455 |
+
|
456 |
+
return custom_forward
|
457 |
+
|
458 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
459 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
460 |
+
create_custom_forward(attn, return_dict=False),
|
461 |
+
hidden_states,
|
462 |
+
encoder_hidden_states,
|
463 |
+
)[0]
|
464 |
+
if motion_module is not None:
|
465 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
466 |
+
create_custom_forward(motion_module),
|
467 |
+
hidden_states.requires_grad_(),
|
468 |
+
temb,
|
469 |
+
encoder_hidden_states,
|
470 |
+
)
|
471 |
+
|
472 |
+
else:
|
473 |
+
hidden_states = resnet(hidden_states, temb)
|
474 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
475 |
+
|
476 |
+
hidden_states = (
|
477 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
478 |
+
if audio_attn is not None
|
479 |
+
else hidden_states
|
480 |
+
)
|
481 |
+
|
482 |
+
# add motion module
|
483 |
+
hidden_states = (
|
484 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
485 |
+
if motion_module is not None
|
486 |
+
else hidden_states
|
487 |
+
)
|
488 |
+
|
489 |
+
output_states += (hidden_states,)
|
490 |
+
|
491 |
+
if self.downsamplers is not None:
|
492 |
+
for downsampler in self.downsamplers:
|
493 |
+
hidden_states = downsampler(hidden_states)
|
494 |
+
|
495 |
+
output_states += (hidden_states,)
|
496 |
+
|
497 |
+
return hidden_states, output_states
|
498 |
+
|
499 |
+
|
500 |
+
class DownBlock3D(nn.Module):
|
501 |
+
def __init__(
|
502 |
+
self,
|
503 |
+
in_channels: int,
|
504 |
+
out_channels: int,
|
505 |
+
temb_channels: int,
|
506 |
+
dropout: float = 0.0,
|
507 |
+
num_layers: int = 1,
|
508 |
+
resnet_eps: float = 1e-6,
|
509 |
+
resnet_time_scale_shift: str = "default",
|
510 |
+
resnet_act_fn: str = "swish",
|
511 |
+
resnet_groups: int = 32,
|
512 |
+
resnet_pre_norm: bool = True,
|
513 |
+
output_scale_factor=1.0,
|
514 |
+
add_downsample=True,
|
515 |
+
downsample_padding=1,
|
516 |
+
use_inflated_groupnorm=False,
|
517 |
+
use_motion_module=None,
|
518 |
+
motion_module_type=None,
|
519 |
+
motion_module_kwargs=None,
|
520 |
+
):
|
521 |
+
super().__init__()
|
522 |
+
resnets = []
|
523 |
+
motion_modules = []
|
524 |
+
|
525 |
+
for i in range(num_layers):
|
526 |
+
in_channels = in_channels if i == 0 else out_channels
|
527 |
+
resnets.append(
|
528 |
+
ResnetBlock3D(
|
529 |
+
in_channels=in_channels,
|
530 |
+
out_channels=out_channels,
|
531 |
+
temb_channels=temb_channels,
|
532 |
+
eps=resnet_eps,
|
533 |
+
groups=resnet_groups,
|
534 |
+
dropout=dropout,
|
535 |
+
time_embedding_norm=resnet_time_scale_shift,
|
536 |
+
non_linearity=resnet_act_fn,
|
537 |
+
output_scale_factor=output_scale_factor,
|
538 |
+
pre_norm=resnet_pre_norm,
|
539 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
540 |
+
)
|
541 |
+
)
|
542 |
+
motion_modules.append(
|
543 |
+
get_motion_module(
|
544 |
+
in_channels=out_channels,
|
545 |
+
motion_module_type=motion_module_type,
|
546 |
+
motion_module_kwargs=motion_module_kwargs,
|
547 |
+
)
|
548 |
+
if use_motion_module
|
549 |
+
else None
|
550 |
+
)
|
551 |
+
|
552 |
+
self.resnets = nn.ModuleList(resnets)
|
553 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
554 |
+
|
555 |
+
if add_downsample:
|
556 |
+
self.downsamplers = nn.ModuleList(
|
557 |
+
[
|
558 |
+
Downsample3D(
|
559 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
560 |
+
)
|
561 |
+
]
|
562 |
+
)
|
563 |
+
else:
|
564 |
+
self.downsamplers = None
|
565 |
+
|
566 |
+
self.gradient_checkpointing = False
|
567 |
+
|
568 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
569 |
+
output_states = ()
|
570 |
+
|
571 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
572 |
+
if self.training and self.gradient_checkpointing:
|
573 |
+
|
574 |
+
def create_custom_forward(module):
|
575 |
+
def custom_forward(*inputs):
|
576 |
+
return module(*inputs)
|
577 |
+
|
578 |
+
return custom_forward
|
579 |
+
|
580 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
581 |
+
if motion_module is not None:
|
582 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
583 |
+
create_custom_forward(motion_module),
|
584 |
+
hidden_states.requires_grad_(),
|
585 |
+
temb,
|
586 |
+
encoder_hidden_states,
|
587 |
+
)
|
588 |
+
else:
|
589 |
+
hidden_states = resnet(hidden_states, temb)
|
590 |
+
|
591 |
+
# add motion module
|
592 |
+
hidden_states = (
|
593 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
594 |
+
if motion_module is not None
|
595 |
+
else hidden_states
|
596 |
+
)
|
597 |
+
|
598 |
+
output_states += (hidden_states,)
|
599 |
+
|
600 |
+
if self.downsamplers is not None:
|
601 |
+
for downsampler in self.downsamplers:
|
602 |
+
hidden_states = downsampler(hidden_states)
|
603 |
+
|
604 |
+
output_states += (hidden_states,)
|
605 |
+
|
606 |
+
return hidden_states, output_states
|
607 |
+
|
608 |
+
|
609 |
+
class CrossAttnUpBlock3D(nn.Module):
|
610 |
+
def __init__(
|
611 |
+
self,
|
612 |
+
in_channels: int,
|
613 |
+
out_channels: int,
|
614 |
+
prev_output_channel: int,
|
615 |
+
temb_channels: int,
|
616 |
+
dropout: float = 0.0,
|
617 |
+
num_layers: int = 1,
|
618 |
+
resnet_eps: float = 1e-6,
|
619 |
+
resnet_time_scale_shift: str = "default",
|
620 |
+
resnet_act_fn: str = "swish",
|
621 |
+
resnet_groups: int = 32,
|
622 |
+
resnet_pre_norm: bool = True,
|
623 |
+
attn_num_head_channels=1,
|
624 |
+
cross_attention_dim=1280,
|
625 |
+
output_scale_factor=1.0,
|
626 |
+
add_upsample=True,
|
627 |
+
dual_cross_attention=False,
|
628 |
+
use_linear_projection=False,
|
629 |
+
only_cross_attention=False,
|
630 |
+
upcast_attention=False,
|
631 |
+
unet_use_cross_frame_attention=False,
|
632 |
+
unet_use_temporal_attention=False,
|
633 |
+
use_inflated_groupnorm=False,
|
634 |
+
use_motion_module=None,
|
635 |
+
motion_module_type=None,
|
636 |
+
motion_module_kwargs=None,
|
637 |
+
add_audio_layer=False,
|
638 |
+
audio_condition_method="cross_attn",
|
639 |
+
custom_audio_layer=False,
|
640 |
+
):
|
641 |
+
super().__init__()
|
642 |
+
resnets = []
|
643 |
+
attentions = []
|
644 |
+
audio_attentions = []
|
645 |
+
motion_modules = []
|
646 |
+
|
647 |
+
self.has_cross_attention = True
|
648 |
+
self.attn_num_head_channels = attn_num_head_channels
|
649 |
+
|
650 |
+
for i in range(num_layers):
|
651 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
652 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
653 |
+
|
654 |
+
resnets.append(
|
655 |
+
ResnetBlock3D(
|
656 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
657 |
+
out_channels=out_channels,
|
658 |
+
temb_channels=temb_channels,
|
659 |
+
eps=resnet_eps,
|
660 |
+
groups=resnet_groups,
|
661 |
+
dropout=dropout,
|
662 |
+
time_embedding_norm=resnet_time_scale_shift,
|
663 |
+
non_linearity=resnet_act_fn,
|
664 |
+
output_scale_factor=output_scale_factor,
|
665 |
+
pre_norm=resnet_pre_norm,
|
666 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
667 |
+
)
|
668 |
+
)
|
669 |
+
if dual_cross_attention:
|
670 |
+
raise NotImplementedError
|
671 |
+
attentions.append(
|
672 |
+
Transformer3DModel(
|
673 |
+
attn_num_head_channels,
|
674 |
+
out_channels // attn_num_head_channels,
|
675 |
+
in_channels=out_channels,
|
676 |
+
num_layers=1,
|
677 |
+
cross_attention_dim=cross_attention_dim,
|
678 |
+
norm_num_groups=resnet_groups,
|
679 |
+
use_linear_projection=use_linear_projection,
|
680 |
+
only_cross_attention=only_cross_attention,
|
681 |
+
upcast_attention=upcast_attention,
|
682 |
+
use_motion_module=use_motion_module,
|
683 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
684 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
685 |
+
add_audio_layer=add_audio_layer,
|
686 |
+
audio_condition_method=audio_condition_method,
|
687 |
+
)
|
688 |
+
)
|
689 |
+
audio_attentions.append(
|
690 |
+
Transformer3DModel(
|
691 |
+
attn_num_head_channels,
|
692 |
+
out_channels // attn_num_head_channels,
|
693 |
+
in_channels=out_channels,
|
694 |
+
num_layers=1,
|
695 |
+
cross_attention_dim=cross_attention_dim,
|
696 |
+
norm_num_groups=resnet_groups,
|
697 |
+
use_linear_projection=use_linear_projection,
|
698 |
+
only_cross_attention=only_cross_attention,
|
699 |
+
upcast_attention=upcast_attention,
|
700 |
+
use_motion_module=use_motion_module,
|
701 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
702 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
703 |
+
add_audio_layer=add_audio_layer,
|
704 |
+
audio_condition_method=audio_condition_method,
|
705 |
+
custom_audio_layer=True,
|
706 |
+
)
|
707 |
+
if custom_audio_layer
|
708 |
+
else None
|
709 |
+
)
|
710 |
+
motion_modules.append(
|
711 |
+
get_motion_module(
|
712 |
+
in_channels=out_channels,
|
713 |
+
motion_module_type=motion_module_type,
|
714 |
+
motion_module_kwargs=motion_module_kwargs,
|
715 |
+
)
|
716 |
+
if use_motion_module
|
717 |
+
else None
|
718 |
+
)
|
719 |
+
|
720 |
+
self.attentions = nn.ModuleList(attentions)
|
721 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
722 |
+
self.resnets = nn.ModuleList(resnets)
|
723 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
724 |
+
|
725 |
+
if add_upsample:
|
726 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
727 |
+
else:
|
728 |
+
self.upsamplers = None
|
729 |
+
|
730 |
+
self.gradient_checkpointing = False
|
731 |
+
|
732 |
+
def forward(
|
733 |
+
self,
|
734 |
+
hidden_states,
|
735 |
+
res_hidden_states_tuple,
|
736 |
+
temb=None,
|
737 |
+
encoder_hidden_states=None,
|
738 |
+
upsample_size=None,
|
739 |
+
attention_mask=None,
|
740 |
+
):
|
741 |
+
for resnet, attn, audio_attn, motion_module in zip(
|
742 |
+
self.resnets, self.attentions, self.audio_attentions, self.motion_modules
|
743 |
+
):
|
744 |
+
# pop res hidden states
|
745 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
746 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
747 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
748 |
+
|
749 |
+
if self.training and self.gradient_checkpointing:
|
750 |
+
|
751 |
+
def create_custom_forward(module, return_dict=None):
|
752 |
+
def custom_forward(*inputs):
|
753 |
+
if return_dict is not None:
|
754 |
+
return module(*inputs, return_dict=return_dict)
|
755 |
+
else:
|
756 |
+
return module(*inputs)
|
757 |
+
|
758 |
+
return custom_forward
|
759 |
+
|
760 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
761 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
762 |
+
create_custom_forward(attn, return_dict=False),
|
763 |
+
hidden_states,
|
764 |
+
encoder_hidden_states,
|
765 |
+
)[0]
|
766 |
+
if motion_module is not None:
|
767 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
768 |
+
create_custom_forward(motion_module),
|
769 |
+
hidden_states.requires_grad_(),
|
770 |
+
temb,
|
771 |
+
encoder_hidden_states,
|
772 |
+
)
|
773 |
+
|
774 |
+
else:
|
775 |
+
hidden_states = resnet(hidden_states, temb)
|
776 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
777 |
+
hidden_states = (
|
778 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
779 |
+
if audio_attn is not None
|
780 |
+
else hidden_states
|
781 |
+
)
|
782 |
+
|
783 |
+
# add motion module
|
784 |
+
hidden_states = (
|
785 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
786 |
+
if motion_module is not None
|
787 |
+
else hidden_states
|
788 |
+
)
|
789 |
+
|
790 |
+
if self.upsamplers is not None:
|
791 |
+
for upsampler in self.upsamplers:
|
792 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
793 |
+
|
794 |
+
return hidden_states
|
795 |
+
|
796 |
+
|
797 |
+
class UpBlock3D(nn.Module):
|
798 |
+
def __init__(
|
799 |
+
self,
|
800 |
+
in_channels: int,
|
801 |
+
prev_output_channel: int,
|
802 |
+
out_channels: int,
|
803 |
+
temb_channels: int,
|
804 |
+
dropout: float = 0.0,
|
805 |
+
num_layers: int = 1,
|
806 |
+
resnet_eps: float = 1e-6,
|
807 |
+
resnet_time_scale_shift: str = "default",
|
808 |
+
resnet_act_fn: str = "swish",
|
809 |
+
resnet_groups: int = 32,
|
810 |
+
resnet_pre_norm: bool = True,
|
811 |
+
output_scale_factor=1.0,
|
812 |
+
add_upsample=True,
|
813 |
+
use_inflated_groupnorm=False,
|
814 |
+
use_motion_module=None,
|
815 |
+
motion_module_type=None,
|
816 |
+
motion_module_kwargs=None,
|
817 |
+
):
|
818 |
+
super().__init__()
|
819 |
+
resnets = []
|
820 |
+
motion_modules = []
|
821 |
+
|
822 |
+
for i in range(num_layers):
|
823 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
824 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
825 |
+
|
826 |
+
resnets.append(
|
827 |
+
ResnetBlock3D(
|
828 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
829 |
+
out_channels=out_channels,
|
830 |
+
temb_channels=temb_channels,
|
831 |
+
eps=resnet_eps,
|
832 |
+
groups=resnet_groups,
|
833 |
+
dropout=dropout,
|
834 |
+
time_embedding_norm=resnet_time_scale_shift,
|
835 |
+
non_linearity=resnet_act_fn,
|
836 |
+
output_scale_factor=output_scale_factor,
|
837 |
+
pre_norm=resnet_pre_norm,
|
838 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
839 |
+
)
|
840 |
+
)
|
841 |
+
motion_modules.append(
|
842 |
+
get_motion_module(
|
843 |
+
in_channels=out_channels,
|
844 |
+
motion_module_type=motion_module_type,
|
845 |
+
motion_module_kwargs=motion_module_kwargs,
|
846 |
+
)
|
847 |
+
if use_motion_module
|
848 |
+
else None
|
849 |
+
)
|
850 |
+
|
851 |
+
self.resnets = nn.ModuleList(resnets)
|
852 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
853 |
+
|
854 |
+
if add_upsample:
|
855 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
856 |
+
else:
|
857 |
+
self.upsamplers = None
|
858 |
+
|
859 |
+
self.gradient_checkpointing = False
|
860 |
+
|
861 |
+
def forward(
|
862 |
+
self,
|
863 |
+
hidden_states,
|
864 |
+
res_hidden_states_tuple,
|
865 |
+
temb=None,
|
866 |
+
upsample_size=None,
|
867 |
+
encoder_hidden_states=None,
|
868 |
+
):
|
869 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
870 |
+
# pop res hidden states
|
871 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
872 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
873 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
874 |
+
|
875 |
+
if self.training and self.gradient_checkpointing:
|
876 |
+
|
877 |
+
def create_custom_forward(module):
|
878 |
+
def custom_forward(*inputs):
|
879 |
+
return module(*inputs)
|
880 |
+
|
881 |
+
return custom_forward
|
882 |
+
|
883 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
884 |
+
if motion_module is not None:
|
885 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
886 |
+
create_custom_forward(motion_module),
|
887 |
+
hidden_states.requires_grad_(),
|
888 |
+
temb,
|
889 |
+
encoder_hidden_states,
|
890 |
+
)
|
891 |
+
else:
|
892 |
+
hidden_states = resnet(hidden_states, temb)
|
893 |
+
hidden_states = (
|
894 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
895 |
+
if motion_module is not None
|
896 |
+
else hidden_states
|
897 |
+
)
|
898 |
+
|
899 |
+
if self.upsamplers is not None:
|
900 |
+
for upsampler in self.upsamplers:
|
901 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
902 |
+
|
903 |
+
return hidden_states
|
latentsync/models/utils.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
def zero_module(module):
|
16 |
+
# Zero out the parameters of a module and return it.
|
17 |
+
for p in module.parameters():
|
18 |
+
p.detach().zero_()
|
19 |
+
return module
|
{pipelines β latentsync/pipelines}/lipsync_pipeline.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/__init__.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/__init__.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/utils.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_finetune.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_pretrain.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/third_party/__init__.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/utils/__init__.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/utils/data_utils.py
RENAMED
File without changes
|
{trepa β latentsync/trepa}/utils/metric_utils.py
RENAMED
File without changes
|
{utils β latentsync/utils}/affine_transform.py
RENAMED
File without changes
|
{utils β latentsync/utils}/audio.py
RENAMED
File without changes
|
{utils β latentsync/utils}/av_reader.py
RENAMED
File without changes
|
{utils β latentsync/utils}/image_processor.py
RENAMED
File without changes
|
latentsync/utils/mask.png
ADDED
![]() |
{utils β latentsync/utils}/util.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/audio2feature.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/__init__.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/__main__.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/merges.txt
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/special_tokens_map.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/tokenizer_config.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/vocab.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/mel_filters.npz
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/added_tokens.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/merges.txt
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/special_tokens_map.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/tokenizer_config.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/vocab.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/audio.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/decoding.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/model.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/__init__.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/basic.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/english.json
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/english.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/tokenizer.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/transcribe.py
RENAMED
File without changes
|
{whisper β latentsync/whisper}/whisper/utils.py
RENAMED
File without changes
|