samarth-ht commited on
Commit
206c178
·
1 Parent(s): 20f3332

files added

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +45 -0
  2. LICENSE +201 -0
  3. README.md +1 -1
  4. app.py +161 -1
  5. cog.yaml +44 -0
  6. configs/audio.yaml +23 -0
  7. configs/scheduler_config.json +13 -0
  8. configs/syncnet/syncnet_16_latent.yaml +46 -0
  9. configs/syncnet/syncnet_16_pixel.yaml +45 -0
  10. configs/syncnet/syncnet_25_pixel.yaml +45 -0
  11. configs/unet/first_stage.yaml +103 -0
  12. configs/unet/second_stage.yaml +103 -0
  13. data/syncnet_dataset.py +153 -0
  14. data/unet_dataset.py +164 -0
  15. data_processing_pipeline.sh +9 -0
  16. eval/detectors/README.md +3 -0
  17. eval/detectors/__init__.py +1 -0
  18. eval/detectors/s3fd/__init__.py +61 -0
  19. eval/detectors/s3fd/box_utils.py +221 -0
  20. eval/detectors/s3fd/nets.py +174 -0
  21. eval/draw_syncnet_lines.py +70 -0
  22. eval/eval_fvd.py +96 -0
  23. eval/eval_sync_conf.py +77 -0
  24. eval/eval_sync_conf.sh +2 -0
  25. eval/eval_syncnet_acc.py +118 -0
  26. eval/eval_syncnet_acc.sh +3 -0
  27. eval/fvd.py +56 -0
  28. eval/hyper_iqa.py +343 -0
  29. eval/inference_videos.py +37 -0
  30. eval/syncnet/__init__.py +1 -0
  31. eval/syncnet/syncnet.py +113 -0
  32. eval/syncnet/syncnet_eval.py +220 -0
  33. eval/syncnet_detect.py +251 -0
  34. inference.sh +9 -0
  35. pipelines/lipsync_pipeline.py +470 -0
  36. predict.py +60 -0
  37. preprocess/affine_transform.py +137 -0
  38. preprocess/data_processing_pipeline.py +85 -0
  39. preprocess/detect_shot.py +62 -0
  40. preprocess/filter_high_resolution.py +112 -0
  41. preprocess/filter_visual_quality.py +127 -0
  42. preprocess/remove_broken_videos.py +43 -0
  43. preprocess/remove_incorrect_affined.py +81 -0
  44. preprocess/resample_fps_hz.py +70 -0
  45. preprocess/segment_videos.py +62 -0
  46. preprocess/sync_av.py +113 -0
  47. requirements.txt +30 -0
  48. scripts/inference.py +103 -0
  49. scripts/train_syncnet.py +336 -0
  50. scripts/train_unet.py +510 -0
.gitignore ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PyCharm files
2
+ .idea/
3
+
4
+ # macOS dir files
5
+ .DS_Store
6
+
7
+ # VS Code configuration dir
8
+ .vscode/
9
+
10
+ # Jupyter Notebook cache files
11
+ .ipynb_checkpoints/
12
+ *.ipynb
13
+
14
+ # Python cache files
15
+ __pycache__/
16
+
17
+ # folders
18
+ wandb/
19
+ *debug*
20
+ /debug
21
+ /output
22
+ /validation
23
+ /test
24
+ /models/
25
+ /venv/
26
+ /detect_results/
27
+ /temp
28
+
29
+ # checkpoint files
30
+ *.safetensors
31
+ *.ckpt
32
+ *.pt
33
+
34
+ # data files
35
+ *.mp4
36
+ *.avi
37
+ *.wav
38
+ *.png
39
+ *.jpg
40
+ *.jpeg
41
+ *.csv
42
+
43
+ !/latentsync/utils/mask.png
44
+ /checkpoints/
45
+ !/assets/*
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -9,4 +9,4 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1 +1,161 @@
1
- print("hello")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from scripts.inference import main
4
+ from omegaconf import OmegaConf
5
+ import argparse
6
+ from datetime import datetime
7
+
8
+ CONFIG_PATH = Path("configs/unet/second_stage.yaml")
9
+ CHECKPOINT_PATH = Path("checkpoints/latentsync_unet.pt")
10
+
11
+
12
+ def process_video(
13
+ video_path,
14
+ audio_path,
15
+ guidance_scale,
16
+ inference_steps,
17
+ seed,
18
+ ):
19
+ # Create the temp directory if it doesn't exist
20
+ output_dir = Path("./temp")
21
+ output_dir.mkdir(parents=True, exist_ok=True)
22
+
23
+ # Convert paths to absolute Path objects and normalize them
24
+ video_file_path = Path(video_path)
25
+ video_path = video_file_path.absolute().as_posix()
26
+ audio_path = Path(audio_path).absolute().as_posix()
27
+
28
+ current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
29
+ # Set the output path for the processed video
30
+ output_path = str(
31
+ output_dir / f"{video_file_path.stem}_{current_time}.mp4"
32
+ ) # Change the filename as needed
33
+
34
+ config = OmegaConf.load(CONFIG_PATH)
35
+
36
+ config["run"].update(
37
+ {
38
+ "guidance_scale": guidance_scale,
39
+ "inference_steps": inference_steps,
40
+ }
41
+ )
42
+
43
+ # Parse the arguments
44
+ args = create_args(video_path, audio_path, output_path, guidance_scale, seed)
45
+
46
+ try:
47
+ result = main(
48
+ config=config,
49
+ args=args,
50
+ )
51
+ print("Processing completed successfully.")
52
+ return output_path # Ensure the output path is returned
53
+ except Exception as e:
54
+ print(f"Error during processing: {str(e)}")
55
+ raise gr.Error(f"Error during processing: {str(e)}")
56
+
57
+
58
+ def create_args(
59
+ video_path: str, audio_path: str, output_path: str, guidance_scale: float, seed: int
60
+ ) -> argparse.Namespace:
61
+ parser = argparse.ArgumentParser()
62
+ parser.add_argument("--inference_ckpt_path", type=str, required=True)
63
+ parser.add_argument("--video_path", type=str, required=True)
64
+ parser.add_argument("--audio_path", type=str, required=True)
65
+ parser.add_argument("--video_out_path", type=str, required=True)
66
+ parser.add_argument("--guidance_scale", type=float, default=1.0)
67
+ parser.add_argument("--seed", type=int, default=1247)
68
+
69
+ return parser.parse_args(
70
+ [
71
+ "--inference_ckpt_path",
72
+ CHECKPOINT_PATH.absolute().as_posix(),
73
+ "--video_path",
74
+ video_path,
75
+ "--audio_path",
76
+ audio_path,
77
+ "--video_out_path",
78
+ output_path,
79
+ "--guidance_scale",
80
+ str(guidance_scale),
81
+ "--seed",
82
+ str(seed),
83
+ ]
84
+ )
85
+
86
+
87
+ # Create Gradio interface
88
+ with gr.Blocks(title="LatentSync Video Processing") as demo:
89
+ gr.Markdown(
90
+ """
91
+ # LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
92
+ Upload a video and audio file to process with LatentSync model.
93
+
94
+ <div align="center">
95
+ <strong>Chunyu Li1,2 Chao Zhang1 Weikai Xu1 Jinghui Xie1,† Weiguo Feng1
96
+ Bingyue Peng1 Weiwei Xing2,†</strong>
97
+ </div>
98
+
99
+ <div align="center">
100
+ <strong>1ByteDance 2Beijing Jiaotong University</strong>
101
+ </div>
102
+
103
+ <div style="display:flex;justify-content:center;column-gap:4px;">
104
+ <a href="https://github.com/bytedance/LatentSync">
105
+ <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
106
+ </a>
107
+ <a href="https://arxiv.org/pdf/2412.09262">
108
+ <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
109
+ </a>
110
+ </div>
111
+ """
112
+ )
113
+
114
+ with gr.Row():
115
+ with gr.Column():
116
+ video_input = gr.Video(label="Input Video")
117
+ audio_input = gr.Audio(label="Input Audio", type="filepath")
118
+
119
+ with gr.Row():
120
+ guidance_scale = gr.Slider(
121
+ minimum=0.1,
122
+ maximum=3.0,
123
+ value=1.0,
124
+ step=0.1,
125
+ label="Guidance Scale",
126
+ )
127
+ inference_steps = gr.Slider(
128
+ minimum=1, maximum=50, value=20, step=1, label="Inference Steps"
129
+ )
130
+
131
+ with gr.Row():
132
+ seed = gr.Number(value=1247, label="Random Seed", precision=0)
133
+
134
+ process_btn = gr.Button("Process Video")
135
+
136
+ with gr.Column():
137
+ video_output = gr.Video(label="Output Video")
138
+
139
+ gr.Examples(
140
+ examples=[
141
+ ["assets/demo1_video.mp4", "assets/demo1_audio.wav"],
142
+ ["assets/demo2_video.mp4", "assets/demo2_audio.wav"],
143
+ ["assets/demo3_video.mp4", "assets/demo3_audio.wav"],
144
+ ],
145
+ inputs=[video_input, audio_input],
146
+ )
147
+
148
+ process_btn.click(
149
+ fn=process_video,
150
+ inputs=[
151
+ video_input,
152
+ audio_input,
153
+ guidance_scale,
154
+ inference_steps,
155
+ seed,
156
+ ],
157
+ outputs=video_output,
158
+ )
159
+
160
+ if __name__ == "__main__":
161
+ demo.launch(inbrowser=True, share=True)
cog.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Configuration for Cog ⚙️
2
+ # Reference: https://cog.run/yaml
3
+
4
+ build:
5
+ gpu: true
6
+ cuda: "12.1"
7
+ system_packages:
8
+ - "ffmpeg"
9
+ - "libgl1"
10
+ python_version: "3.10.13"
11
+ python_packages:
12
+ - "torch==2.2.2"
13
+ - "torchvision"
14
+ - "triton==2.2.0"
15
+ - "diffusers==0.11.1"
16
+ - "transformers==4.38.0"
17
+ - "huggingface-hub==0.25.2"
18
+ - "imageio==2.27.0"
19
+ - "decord==0.6.0"
20
+ - "accelerate==0.26.1"
21
+ - "einops==0.7.0"
22
+ - "omegaconf==2.3.0"
23
+ - "safetensors==0.4.2"
24
+ - "opencv-python==4.9.0.80"
25
+ - "mediapipe==0.10.11"
26
+ - "av==11.0.0"
27
+ - "torch-fidelity==0.3.0"
28
+ - "torchmetrics==1.3.1"
29
+ - "python_speech_features==0.6"
30
+ - "librosa==0.10.1"
31
+ - "scenedetect==0.6.1"
32
+ - "ffmpeg-python==0.2.0"
33
+ - "lpips==0.1.4"
34
+ - "face-alignment==1.4.1"
35
+ - "ninja==1.11.1.1"
36
+ - "pandas==2.0.3"
37
+ - "numpy==1.24.4"
38
+ - "xformers==0.0.26"
39
+
40
+ run:
41
+ - curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.8.2/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
42
+
43
+ # predict.py defines how predictions are run on your model
44
+ predict: "predict.py:Predictor"
configs/audio.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ num_mels: 80 # Number of mel-spectrogram channels and local conditioning dimensionality
3
+ rescale: true # Whether to rescale audio prior to preprocessing
4
+ rescaling_max: 0.9 # Rescaling value
5
+ use_lws:
6
+ false # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
7
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
8
+ # Does not work if n_ffit is not multiple of hop_size!!
9
+ n_fft: 800 # Extra window size is filled with 0 paddings to match this parameter
10
+ hop_size: 200 # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
11
+ win_size: 800 # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
12
+ sample_rate: 16000 # 16000Hz (corresponding to librispeech) (sox --i <filename>)
13
+ frame_shift_ms: null
14
+ signal_normalization: true
15
+ allow_clipping_in_normalization: true
16
+ symmetric_mels: true
17
+ max_abs_value: 4.0
18
+ preemphasize: true # whether to apply filter
19
+ preemphasis: 0.97 # filter coefficient.
20
+ min_level_db: -100
21
+ ref_level_db: 20
22
+ fmin: 55
23
+ fmax: 7600
configs/scheduler_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.6.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "num_train_timesteps": 1000,
9
+ "set_alpha_to_one": false,
10
+ "steps_offset": 1,
11
+ "trained_betas": null,
12
+ "skip_prk_steps": true
13
+ }
configs/syncnet/syncnet_16_latent.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024]
5
+ downsample_factors: [[2, 1], 2, 2, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (64, 32, 32)
9
+ in_channels: 64
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
11
+ downsample_factors: [2, 2, 2, 1, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: ""
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: output/syncnet
22
+ num_val_samples: 1200
23
+ batch_size: 120 # 40
24
+ num_workers: 11 # 11
25
+ latent_space: true
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: ""
29
+ train_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/train
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: false
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ validation_steps: 2500
45
+ mixed_precision_training: true
46
+ seed: 42
configs/syncnet/syncnet_16_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024, 2048]
5
+ downsample_factors: [[2, 1], 2, 2, 1, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (48, 128, 256)
9
+ in_channels: 48
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024, 2048, 2048]
11
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: checkpoints/latentsync_syncnet.pt
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: debug/syncnet
22
+ num_val_samples: 2048
23
+ batch_size: 128 # 128
24
+ num_workers: 11 # 11
25
+ latent_space: false
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
29
+ train_data_dir: ""
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: true
34
+ audio_sample_rate: 16000
35
+ video_fps: 25
36
+
37
+ optimizer:
38
+ lr: 1e-5
39
+ max_grad_norm: 1.0
40
+
41
+ run:
42
+ max_train_steps: 10000000
43
+ validation_steps: 2500
44
+ mixed_precision_training: true
45
+ seed: 42
configs/syncnet/syncnet_25_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 80)
3
+ in_channels: 1
4
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
5
+ downsample_factors: [2, 2, 2, 2, 2, 2]
6
+ dropout: 0.0
7
+ visual_encoder: # input (75, 128, 256)
8
+ in_channels: 75
9
+ block_out_channels: [128, 128, 256, 256, 512, 512, 1024, 1024]
10
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
11
+ dropout: 0.0
12
+
13
+ ckpt:
14
+ resume_ckpt_path: ""
15
+ inference_ckpt_path: ""
16
+ save_ckpt_steps: 2500
17
+
18
+ data:
19
+ train_output_dir: debug/syncnet
20
+ num_val_samples: 2048
21
+ batch_size: 64 # 64
22
+ num_workers: 11 # 11
23
+ latent_space: false
24
+ num_frames: 25
25
+ resolution: 256
26
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_vox_avatars_ads_affine.txt
27
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_voxceleb_avatars_affine.txt
28
+ train_data_dir: ""
29
+ val_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/vox_affine_val.txt
30
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/voxceleb_val.txt
31
+ val_data_dir: ""
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel
33
+ lower_half: true
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ mixed_precision_training: true
45
+ seed: 42
configs/unet/first_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 8 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: false
25
+ use_syncnet: false
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
configs/unet/second_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 2 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: true
25
+ use_syncnet: true
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
data/syncnet_dataset.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ from ..utils.util import gather_video_paths_recursively
21
+ from ..utils.image_processor import ImageProcessor
22
+ from ..utils.audio import melspectrogram
23
+ import math
24
+
25
+ from decord import AudioReader, VideoReader, cpu
26
+
27
+
28
+ class SyncNetDataset(Dataset):
29
+ def __init__(self, data_dir: str, fileslist: str, config):
30
+ if fileslist != "":
31
+ with open(fileslist) as file:
32
+ self.video_paths = [line.rstrip() for line in file]
33
+ elif data_dir != "":
34
+ self.video_paths = gather_video_paths_recursively(data_dir)
35
+ else:
36
+ raise ValueError("data_dir and fileslist cannot be both empty")
37
+
38
+ self.resolution = config.data.resolution
39
+ self.num_frames = config.data.num_frames
40
+
41
+ self.mel_window_length = math.ceil(self.num_frames / 5 * 16)
42
+
43
+ self.audio_sample_rate = config.data.audio_sample_rate
44
+ self.video_fps = config.data.video_fps
45
+ self.audio_samples_length = int(
46
+ config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames
47
+ )
48
+ self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half")
49
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
50
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
51
+
52
+ def __len__(self):
53
+ return len(self.video_paths)
54
+
55
+ def read_audio(self, video_path: str):
56
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
57
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
58
+ return torch.from_numpy(original_mel)
59
+
60
+ def crop_audio_window(self, original_mel, start_index):
61
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
62
+ end_idx = start_idx + self.mel_window_length
63
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
64
+
65
+ def get_frames(self, video_reader: VideoReader):
66
+ total_num_frames = len(video_reader)
67
+
68
+ start_idx = random.randint(0, total_num_frames - self.num_frames)
69
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
70
+
71
+ while True:
72
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
73
+ # wrong_start_idx = random.randint(
74
+ # max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25)
75
+ # )
76
+ if wrong_start_idx == start_idx:
77
+ continue
78
+ # if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames:
79
+ # continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ # setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask))
93
+
94
+ def __getitem__(self, idx):
95
+ # image_processor = getattr(self, f"image_processor_{self.worker_id}")
96
+ while True:
97
+ try:
98
+ idx = random.randint(0, len(self) - 1)
99
+
100
+ # Get video file path
101
+ video_path = self.video_paths[idx]
102
+
103
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
104
+
105
+ if len(vr) < 2 * self.num_frames:
106
+ continue
107
+
108
+ frames, wrong_frames, start_idx = self.get_frames(vr)
109
+
110
+ mel_cache_path = os.path.join(
111
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
112
+ )
113
+
114
+ if os.path.isfile(mel_cache_path):
115
+ try:
116
+ original_mel = torch.load(mel_cache_path)
117
+ except Exception as e:
118
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
119
+ os.remove(mel_cache_path)
120
+ original_mel = self.read_audio(video_path)
121
+ torch.save(original_mel, mel_cache_path)
122
+ else:
123
+ original_mel = self.read_audio(video_path)
124
+ torch.save(original_mel, mel_cache_path)
125
+
126
+ mel = self.crop_audio_window(original_mel, start_idx)
127
+
128
+ if mel.shape[-1] != self.mel_window_length:
129
+ continue
130
+
131
+ if random.choice([True, False]):
132
+ y = torch.ones(1).float()
133
+ chosen_frames = frames
134
+ else:
135
+ y = torch.zeros(1).float()
136
+ chosen_frames = wrong_frames
137
+
138
+ chosen_frames = self.image_processor.process_images(chosen_frames)
139
+ # chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images(
140
+ # chosen_frames, affine_transform=True
141
+ # )
142
+
143
+ vr.seek(0) # avoid memory leak
144
+ break
145
+
146
+ except Exception as e: # Handle the exception of face not detcted
147
+ print(f"{type(e).__name__} - {e} - {video_path}")
148
+ if "vr" in locals():
149
+ vr.seek(0) # avoid memory leak
150
+
151
+ sample = dict(frames=chosen_frames, audio_samples=mel, y=y)
152
+
153
+ return sample
data/unet_dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ import cv2
21
+ from ..utils.image_processor import ImageProcessor, load_fixed_mask
22
+ from ..utils.audio import melspectrogram
23
+ from decord import AudioReader, VideoReader, cpu
24
+
25
+
26
+ class UNetDataset(Dataset):
27
+ def __init__(self, train_data_dir: str, config):
28
+ if config.data.train_fileslist != "":
29
+ with open(config.data.train_fileslist) as file:
30
+ self.video_paths = [line.rstrip() for line in file]
31
+ elif train_data_dir != "":
32
+ self.video_paths = []
33
+ for file in os.listdir(train_data_dir):
34
+ if file.endswith(".mp4"):
35
+ self.video_paths.append(os.path.join(train_data_dir, file))
36
+ else:
37
+ raise ValueError("data_dir and fileslist cannot be both empty")
38
+
39
+ self.resolution = config.data.resolution
40
+ self.num_frames = config.data.num_frames
41
+
42
+ if self.num_frames == 16:
43
+ self.mel_window_length = 52
44
+ elif self.num_frames == 5:
45
+ self.mel_window_length = 16
46
+ else:
47
+ raise NotImplementedError("Only support 16 and 5 frames now")
48
+
49
+ self.audio_sample_rate = config.data.audio_sample_rate
50
+ self.video_fps = config.data.video_fps
51
+ self.mask = config.data.mask
52
+ self.mask_image = load_fixed_mask(self.resolution)
53
+ self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
54
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
55
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
56
+
57
+ def __len__(self):
58
+ return len(self.video_paths)
59
+
60
+ def read_audio(self, video_path: str):
61
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
62
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
63
+ return torch.from_numpy(original_mel)
64
+
65
+ def crop_audio_window(self, original_mel, start_index):
66
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
67
+ end_idx = start_idx + self.mel_window_length
68
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
69
+
70
+ def get_frames(self, video_reader: VideoReader):
71
+ total_num_frames = len(video_reader)
72
+
73
+ start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2)
74
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
75
+
76
+ while True:
77
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
78
+ if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames:
79
+ continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ setattr(
93
+ self,
94
+ f"image_processor_{worker_id}",
95
+ ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image),
96
+ )
97
+
98
+ def __getitem__(self, idx):
99
+ image_processor = getattr(self, f"image_processor_{self.worker_id}")
100
+ while True:
101
+ try:
102
+ idx = random.randint(0, len(self) - 1)
103
+
104
+ # Get video file path
105
+ video_path = self.video_paths[idx]
106
+
107
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
108
+
109
+ if len(vr) < 3 * self.num_frames:
110
+ continue
111
+
112
+ continuous_frames, ref_frames, start_idx = self.get_frames(vr)
113
+
114
+ if self.load_audio_data:
115
+ mel_cache_path = os.path.join(
116
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
117
+ )
118
+
119
+ if os.path.isfile(mel_cache_path):
120
+ try:
121
+ original_mel = torch.load(mel_cache_path)
122
+ except Exception as e:
123
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
124
+ os.remove(mel_cache_path)
125
+ original_mel = self.read_audio(video_path)
126
+ torch.save(original_mel, mel_cache_path)
127
+ else:
128
+ original_mel = self.read_audio(video_path)
129
+ torch.save(original_mel, mel_cache_path)
130
+
131
+ mel = self.crop_audio_window(original_mel, start_idx)
132
+
133
+ if mel.shape[-1] != self.mel_window_length:
134
+ continue
135
+ else:
136
+ mel = []
137
+
138
+ gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images(
139
+ continuous_frames, affine_transform=False
140
+ )
141
+
142
+ if self.mask == "fix_mask":
143
+ ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False)
144
+ else:
145
+ ref = image_processor.process_images(ref_frames)
146
+ vr.seek(0) # avoid memory leak
147
+ break
148
+
149
+ except Exception as e: # Handle the exception of face not detcted
150
+ print(f"{type(e).__name__} - {e} - {video_path}")
151
+ if "vr" in locals():
152
+ vr.seek(0) # avoid memory leak
153
+
154
+ sample = dict(
155
+ gt=gt,
156
+ masked_gt=masked_gt,
157
+ ref=ref,
158
+ mel=mel,
159
+ mask=mask,
160
+ video_path=video_path,
161
+ start_idx=start_idx,
162
+ )
163
+
164
+ return sample
data_processing_pipeline.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m preprocess.data_processing_pipeline \
4
+ --total_num_workers 20 \
5
+ --per_gpu_num_workers 10 \
6
+ --resolution 256 \
7
+ --sync_conf_threshold 3 \
8
+ --temp_dir temp \
9
+ --input_dir /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/raw
eval/detectors/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Face detector
2
+
3
+ This face detector is adapted from `https://github.com/cs-giung/face-detection-pytorch`.
eval/detectors/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .s3fd import S3FD
eval/detectors/s3fd/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+ from torchvision import transforms
6
+ from .nets import S3FDNet
7
+ from .box_utils import nms_
8
+
9
+ PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth'
10
+ img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32')
11
+
12
+
13
+ class S3FD():
14
+
15
+ def __init__(self, device='cuda'):
16
+
17
+ tstamp = time.time()
18
+ self.device = device
19
+
20
+ print('[S3FD] loading with', self.device)
21
+ self.net = S3FDNet(device=self.device).to(self.device)
22
+ state_dict = torch.load(PATH_WEIGHT, map_location=self.device)
23
+ self.net.load_state_dict(state_dict)
24
+ self.net.eval()
25
+ print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp))
26
+
27
+ def detect_faces(self, image, conf_th=0.8, scales=[1]):
28
+
29
+ w, h = image.shape[1], image.shape[0]
30
+
31
+ bboxes = np.empty(shape=(0, 5))
32
+
33
+ with torch.no_grad():
34
+ for s in scales:
35
+ scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
36
+
37
+ scaled_img = np.swapaxes(scaled_img, 1, 2)
38
+ scaled_img = np.swapaxes(scaled_img, 1, 0)
39
+ scaled_img = scaled_img[[2, 1, 0], :, :]
40
+ scaled_img = scaled_img.astype('float32')
41
+ scaled_img -= img_mean
42
+ scaled_img = scaled_img[[2, 1, 0], :, :]
43
+ x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device)
44
+ y = self.net(x)
45
+
46
+ detections = y.data
47
+ scale = torch.Tensor([w, h, w, h])
48
+
49
+ for i in range(detections.size(1)):
50
+ j = 0
51
+ while detections[0, i, j, 0] > conf_th:
52
+ score = detections[0, i, j, 0]
53
+ pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
54
+ bbox = (pt[0], pt[1], pt[2], pt[3], score)
55
+ bboxes = np.vstack((bboxes, bbox))
56
+ j += 1
57
+
58
+ keep = nms_(bboxes, 0.1)
59
+ bboxes = bboxes[keep]
60
+
61
+ return bboxes
eval/detectors/s3fd/box_utils.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from itertools import product as product
3
+ import torch
4
+ from torch.autograd import Function
5
+ import warnings
6
+
7
+
8
+ def nms_(dets, thresh):
9
+ """
10
+ Courtesy of Ross Girshick
11
+ [https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
12
+ """
13
+ x1 = dets[:, 0]
14
+ y1 = dets[:, 1]
15
+ x2 = dets[:, 2]
16
+ y2 = dets[:, 3]
17
+ scores = dets[:, 4]
18
+
19
+ areas = (x2 - x1) * (y2 - y1)
20
+ order = scores.argsort()[::-1]
21
+
22
+ keep = []
23
+ while order.size > 0:
24
+ i = order[0]
25
+ keep.append(int(i))
26
+ xx1 = np.maximum(x1[i], x1[order[1:]])
27
+ yy1 = np.maximum(y1[i], y1[order[1:]])
28
+ xx2 = np.minimum(x2[i], x2[order[1:]])
29
+ yy2 = np.minimum(y2[i], y2[order[1:]])
30
+
31
+ w = np.maximum(0.0, xx2 - xx1)
32
+ h = np.maximum(0.0, yy2 - yy1)
33
+ inter = w * h
34
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
35
+
36
+ inds = np.where(ovr <= thresh)[0]
37
+ order = order[inds + 1]
38
+
39
+ return np.array(keep).astype(np.int32)
40
+
41
+
42
+ def decode(loc, priors, variances):
43
+ """Decode locations from predictions using priors to undo
44
+ the encoding we did for offset regression at train time.
45
+ Args:
46
+ loc (tensor): location predictions for loc layers,
47
+ Shape: [num_priors,4]
48
+ priors (tensor): Prior boxes in center-offset form.
49
+ Shape: [num_priors,4].
50
+ variances: (list[float]) Variances of priorboxes
51
+ Return:
52
+ decoded bounding box predictions
53
+ """
54
+
55
+ boxes = torch.cat((
56
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
57
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
58
+ boxes[:, :2] -= boxes[:, 2:] / 2
59
+ boxes[:, 2:] += boxes[:, :2]
60
+ return boxes
61
+
62
+
63
+ def nms(boxes, scores, overlap=0.5, top_k=200):
64
+ """Apply non-maximum suppression at test time to avoid detecting too many
65
+ overlapping bounding boxes for a given object.
66
+ Args:
67
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
68
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
69
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
70
+ top_k: (int) The Maximum number of box preds to consider.
71
+ Return:
72
+ The indices of the kept boxes with respect to num_priors.
73
+ """
74
+
75
+ keep = scores.new(scores.size(0)).zero_().long()
76
+ if boxes.numel() == 0:
77
+ return keep, 0
78
+ x1 = boxes[:, 0]
79
+ y1 = boxes[:, 1]
80
+ x2 = boxes[:, 2]
81
+ y2 = boxes[:, 3]
82
+ area = torch.mul(x2 - x1, y2 - y1)
83
+ v, idx = scores.sort(0) # sort in ascending order
84
+ # I = I[v >= 0.01]
85
+ idx = idx[-top_k:] # indices of the top-k largest vals
86
+ xx1 = boxes.new()
87
+ yy1 = boxes.new()
88
+ xx2 = boxes.new()
89
+ yy2 = boxes.new()
90
+ w = boxes.new()
91
+ h = boxes.new()
92
+
93
+ # keep = torch.Tensor()
94
+ count = 0
95
+ while idx.numel() > 0:
96
+ i = idx[-1] # index of current largest val
97
+ # keep.append(i)
98
+ keep[count] = i
99
+ count += 1
100
+ if idx.size(0) == 1:
101
+ break
102
+ idx = idx[:-1] # remove kept element from view
103
+ # load bboxes of next highest vals
104
+ with warnings.catch_warnings():
105
+ # Ignore UserWarning within this block
106
+ warnings.simplefilter("ignore", category=UserWarning)
107
+ torch.index_select(x1, 0, idx, out=xx1)
108
+ torch.index_select(y1, 0, idx, out=yy1)
109
+ torch.index_select(x2, 0, idx, out=xx2)
110
+ torch.index_select(y2, 0, idx, out=yy2)
111
+ # store element-wise max with next highest score
112
+ xx1 = torch.clamp(xx1, min=x1[i])
113
+ yy1 = torch.clamp(yy1, min=y1[i])
114
+ xx2 = torch.clamp(xx2, max=x2[i])
115
+ yy2 = torch.clamp(yy2, max=y2[i])
116
+ w.resize_as_(xx2)
117
+ h.resize_as_(yy2)
118
+ w = xx2 - xx1
119
+ h = yy2 - yy1
120
+ # check sizes of xx1 and xx2.. after each iteration
121
+ w = torch.clamp(w, min=0.0)
122
+ h = torch.clamp(h, min=0.0)
123
+ inter = w * h
124
+ # IoU = i / (area(a) + area(b) - i)
125
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
126
+ union = (rem_areas - inter) + area[i]
127
+ IoU = inter / union # store result in iou
128
+ # keep only elements with an IoU <= overlap
129
+ idx = idx[IoU.le(overlap)]
130
+ return keep, count
131
+
132
+
133
+ class Detect(object):
134
+
135
+ def __init__(self, num_classes=2,
136
+ top_k=750, nms_thresh=0.3, conf_thresh=0.05,
137
+ variance=[0.1, 0.2], nms_top_k=5000):
138
+
139
+ self.num_classes = num_classes
140
+ self.top_k = top_k
141
+ self.nms_thresh = nms_thresh
142
+ self.conf_thresh = conf_thresh
143
+ self.variance = variance
144
+ self.nms_top_k = nms_top_k
145
+
146
+ def forward(self, loc_data, conf_data, prior_data):
147
+
148
+ num = loc_data.size(0)
149
+ num_priors = prior_data.size(0)
150
+
151
+ conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
152
+ batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
153
+ batch_priors = batch_priors.contiguous().view(-1, 4)
154
+
155
+ decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
156
+ decoded_boxes = decoded_boxes.view(num, num_priors, 4)
157
+
158
+ output = torch.zeros(num, self.num_classes, self.top_k, 5)
159
+
160
+ for i in range(num):
161
+ boxes = decoded_boxes[i].clone()
162
+ conf_scores = conf_preds[i].clone()
163
+
164
+ for cl in range(1, self.num_classes):
165
+ c_mask = conf_scores[cl].gt(self.conf_thresh)
166
+ scores = conf_scores[cl][c_mask]
167
+
168
+ if scores.dim() == 0:
169
+ continue
170
+ l_mask = c_mask.unsqueeze(1).expand_as(boxes)
171
+ boxes_ = boxes[l_mask].view(-1, 4)
172
+ ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
173
+ count = count if count < self.top_k else self.top_k
174
+
175
+ output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
176
+
177
+ return output
178
+
179
+
180
+ class PriorBox(object):
181
+
182
+ def __init__(self, input_size, feature_maps,
183
+ variance=[0.1, 0.2],
184
+ min_sizes=[16, 32, 64, 128, 256, 512],
185
+ steps=[4, 8, 16, 32, 64, 128],
186
+ clip=False):
187
+
188
+ super(PriorBox, self).__init__()
189
+
190
+ self.imh = input_size[0]
191
+ self.imw = input_size[1]
192
+ self.feature_maps = feature_maps
193
+
194
+ self.variance = variance
195
+ self.min_sizes = min_sizes
196
+ self.steps = steps
197
+ self.clip = clip
198
+
199
+ def forward(self):
200
+ mean = []
201
+ for k, fmap in enumerate(self.feature_maps):
202
+ feath = fmap[0]
203
+ featw = fmap[1]
204
+ for i, j in product(range(feath), range(featw)):
205
+ f_kw = self.imw / self.steps[k]
206
+ f_kh = self.imh / self.steps[k]
207
+
208
+ cx = (j + 0.5) / f_kw
209
+ cy = (i + 0.5) / f_kh
210
+
211
+ s_kw = self.min_sizes[k] / self.imw
212
+ s_kh = self.min_sizes[k] / self.imh
213
+
214
+ mean += [cx, cy, s_kw, s_kh]
215
+
216
+ output = torch.FloatTensor(mean).view(-1, 4)
217
+
218
+ if self.clip:
219
+ output.clamp_(max=1, min=0)
220
+
221
+ return output
eval/detectors/s3fd/nets.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.nn.init as init
5
+ from .box_utils import Detect, PriorBox
6
+
7
+
8
+ class L2Norm(nn.Module):
9
+
10
+ def __init__(self, n_channels, scale):
11
+ super(L2Norm, self).__init__()
12
+ self.n_channels = n_channels
13
+ self.gamma = scale or None
14
+ self.eps = 1e-10
15
+ self.weight = nn.Parameter(torch.Tensor(self.n_channels))
16
+ self.reset_parameters()
17
+
18
+ def reset_parameters(self):
19
+ init.constant_(self.weight, self.gamma)
20
+
21
+ def forward(self, x):
22
+ norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
23
+ x = torch.div(x, norm)
24
+ out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
25
+ return out
26
+
27
+
28
+ class S3FDNet(nn.Module):
29
+
30
+ def __init__(self, device='cuda'):
31
+ super(S3FDNet, self).__init__()
32
+ self.device = device
33
+
34
+ self.vgg = nn.ModuleList([
35
+ nn.Conv2d(3, 64, 3, 1, padding=1),
36
+ nn.ReLU(inplace=True),
37
+ nn.Conv2d(64, 64, 3, 1, padding=1),
38
+ nn.ReLU(inplace=True),
39
+ nn.MaxPool2d(2, 2),
40
+
41
+ nn.Conv2d(64, 128, 3, 1, padding=1),
42
+ nn.ReLU(inplace=True),
43
+ nn.Conv2d(128, 128, 3, 1, padding=1),
44
+ nn.ReLU(inplace=True),
45
+ nn.MaxPool2d(2, 2),
46
+
47
+ nn.Conv2d(128, 256, 3, 1, padding=1),
48
+ nn.ReLU(inplace=True),
49
+ nn.Conv2d(256, 256, 3, 1, padding=1),
50
+ nn.ReLU(inplace=True),
51
+ nn.Conv2d(256, 256, 3, 1, padding=1),
52
+ nn.ReLU(inplace=True),
53
+ nn.MaxPool2d(2, 2, ceil_mode=True),
54
+
55
+ nn.Conv2d(256, 512, 3, 1, padding=1),
56
+ nn.ReLU(inplace=True),
57
+ nn.Conv2d(512, 512, 3, 1, padding=1),
58
+ nn.ReLU(inplace=True),
59
+ nn.Conv2d(512, 512, 3, 1, padding=1),
60
+ nn.ReLU(inplace=True),
61
+ nn.MaxPool2d(2, 2),
62
+
63
+ nn.Conv2d(512, 512, 3, 1, padding=1),
64
+ nn.ReLU(inplace=True),
65
+ nn.Conv2d(512, 512, 3, 1, padding=1),
66
+ nn.ReLU(inplace=True),
67
+ nn.Conv2d(512, 512, 3, 1, padding=1),
68
+ nn.ReLU(inplace=True),
69
+ nn.MaxPool2d(2, 2),
70
+
71
+ nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
72
+ nn.ReLU(inplace=True),
73
+ nn.Conv2d(1024, 1024, 1, 1),
74
+ nn.ReLU(inplace=True),
75
+ ])
76
+
77
+ self.L2Norm3_3 = L2Norm(256, 10)
78
+ self.L2Norm4_3 = L2Norm(512, 8)
79
+ self.L2Norm5_3 = L2Norm(512, 5)
80
+
81
+ self.extras = nn.ModuleList([
82
+ nn.Conv2d(1024, 256, 1, 1),
83
+ nn.Conv2d(256, 512, 3, 2, padding=1),
84
+ nn.Conv2d(512, 128, 1, 1),
85
+ nn.Conv2d(128, 256, 3, 2, padding=1),
86
+ ])
87
+
88
+ self.loc = nn.ModuleList([
89
+ nn.Conv2d(256, 4, 3, 1, padding=1),
90
+ nn.Conv2d(512, 4, 3, 1, padding=1),
91
+ nn.Conv2d(512, 4, 3, 1, padding=1),
92
+ nn.Conv2d(1024, 4, 3, 1, padding=1),
93
+ nn.Conv2d(512, 4, 3, 1, padding=1),
94
+ nn.Conv2d(256, 4, 3, 1, padding=1),
95
+ ])
96
+
97
+ self.conf = nn.ModuleList([
98
+ nn.Conv2d(256, 4, 3, 1, padding=1),
99
+ nn.Conv2d(512, 2, 3, 1, padding=1),
100
+ nn.Conv2d(512, 2, 3, 1, padding=1),
101
+ nn.Conv2d(1024, 2, 3, 1, padding=1),
102
+ nn.Conv2d(512, 2, 3, 1, padding=1),
103
+ nn.Conv2d(256, 2, 3, 1, padding=1),
104
+ ])
105
+
106
+ self.softmax = nn.Softmax(dim=-1)
107
+ self.detect = Detect()
108
+
109
+ def forward(self, x):
110
+ size = x.size()[2:]
111
+ sources = list()
112
+ loc = list()
113
+ conf = list()
114
+
115
+ for k in range(16):
116
+ x = self.vgg[k](x)
117
+ s = self.L2Norm3_3(x)
118
+ sources.append(s)
119
+
120
+ for k in range(16, 23):
121
+ x = self.vgg[k](x)
122
+ s = self.L2Norm4_3(x)
123
+ sources.append(s)
124
+
125
+ for k in range(23, 30):
126
+ x = self.vgg[k](x)
127
+ s = self.L2Norm5_3(x)
128
+ sources.append(s)
129
+
130
+ for k in range(30, len(self.vgg)):
131
+ x = self.vgg[k](x)
132
+ sources.append(x)
133
+
134
+ # apply extra layers and cache source layer outputs
135
+ for k, v in enumerate(self.extras):
136
+ x = F.relu(v(x), inplace=True)
137
+ if k % 2 == 1:
138
+ sources.append(x)
139
+
140
+ # apply multibox head to source layers
141
+ loc_x = self.loc[0](sources[0])
142
+ conf_x = self.conf[0](sources[0])
143
+
144
+ max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
145
+ conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
146
+
147
+ loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
148
+ conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
149
+
150
+ for i in range(1, len(sources)):
151
+ x = sources[i]
152
+ conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
153
+ loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
154
+
155
+ features_maps = []
156
+ for i in range(len(loc)):
157
+ feat = []
158
+ feat += [loc[i].size(1), loc[i].size(2)]
159
+ features_maps += [feat]
160
+
161
+ loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
162
+ conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
163
+
164
+ with torch.no_grad():
165
+ self.priorbox = PriorBox(size, features_maps)
166
+ self.priors = self.priorbox.forward()
167
+
168
+ output = self.detect.forward(
169
+ loc.view(loc.size(0), -1, 4),
170
+ self.softmax(conf.view(conf.size(0), -1, 2)),
171
+ self.priors.type(type(x.data)).to(self.device)
172
+ )
173
+
174
+ return output
eval/draw_syncnet_lines.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import matplotlib.pyplot as plt
17
+
18
+
19
+ class Chart:
20
+ def __init__(self):
21
+ self.loss_list = []
22
+
23
+ def add_ckpt(self, ckpt_path, line_name):
24
+ ckpt = torch.load(ckpt_path, map_location="cpu")
25
+ train_step_list = ckpt["train_step_list"]
26
+ train_loss_list = ckpt["train_loss_list"]
27
+ val_step_list = ckpt["val_step_list"]
28
+ val_loss_list = ckpt["val_loss_list"]
29
+ val_step_list = [val_step_list[0]] + val_step_list[4::5]
30
+ val_loss_list = [val_loss_list[0]] + val_loss_list[4::5]
31
+ self.loss_list.append((line_name, train_step_list, train_loss_list, val_step_list, val_loss_list))
32
+
33
+ def draw(self, save_path, plot_val=True):
34
+ # Global settings
35
+ plt.rcParams["font.size"] = 14
36
+ plt.rcParams["font.family"] = "serif"
37
+ plt.rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Lucida Grande"]
38
+ plt.rcParams["font.serif"] = ["Times New Roman", "DejaVu Serif"]
39
+
40
+ # Creating the plot
41
+ plt.figure(figsize=(7.766, 4.8)) # Golden ratio
42
+ for loss in self.loss_list:
43
+ if plot_val:
44
+ (line,) = plt.plot(loss[1], loss[2], label=loss[0], linewidth=0.5, alpha=0.5)
45
+ line_color = line.get_color()
46
+ plt.plot(loss[3], loss[4], linewidth=1.5, color=line_color)
47
+ else:
48
+ plt.plot(loss[1], loss[2], label=loss[0], linewidth=1)
49
+ plt.xlabel("Step")
50
+ plt.ylabel("Loss")
51
+ legend = plt.legend()
52
+ # legend = plt.legend(loc='upper right', bbox_to_anchor=(1, 0.82))
53
+
54
+ # Adjust the linewidth of legend
55
+ for line in legend.get_lines():
56
+ line.set_linewidth(2)
57
+
58
+ plt.savefig(save_path, transparent=True)
59
+ plt.close()
60
+
61
+
62
+ if __name__ == "__main__":
63
+ chart = Chart()
64
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:14:43/checkpoints/checkpoint-10000.pt", "w/ self-attn")
65
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "w/o self-attn")
66
+ chart.add_ckpt("output/syncnet/train-2024_10_24-21:03:11/checkpoints/checkpoint-10000.pt", "Dim 512")
67
+ chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "Dim 2048")
68
+ chart.add_ckpt("output/syncnet/train-2024_10_24-22:37:04/checkpoints/checkpoint-10000.pt", "Dim 4096")
69
+ chart.add_ckpt("output/syncnet/train-2024_10_25-02:30:17/checkpoints/checkpoint-10000.pt", "Dim 6144")
70
+ chart.draw("ablation.pdf", plot_val=True)
eval/eval_fvd.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import mediapipe as mp
16
+ import cv2
17
+ from decord import VideoReader
18
+ from einops import rearrange
19
+ import os
20
+ import numpy as np
21
+ import torch
22
+ import tqdm
23
+ from eval.fvd import compute_our_fvd
24
+
25
+
26
+ class FVD:
27
+ def __init__(self, resolution=(224, 224)):
28
+ self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
29
+ self.resolution = resolution
30
+
31
+ def detect_face(self, image):
32
+ height, width = image.shape[:2]
33
+ # Process the image and detect faces.
34
+ results = self.face_detector.process(image)
35
+
36
+ if not results.detections: # Face not detected
37
+ raise Exception("Face not detected")
38
+
39
+ detection = results.detections[0] # Only use the first face in the image
40
+ bounding_box = detection.location_data.relative_bounding_box
41
+ xmin = int(bounding_box.xmin * width)
42
+ ymin = int(bounding_box.ymin * height)
43
+ face_width = int(bounding_box.width * width)
44
+ face_height = int(bounding_box.height * height)
45
+
46
+ # Crop the image to the bounding box.
47
+ xmin = max(0, xmin)
48
+ ymin = max(0, ymin)
49
+ xmax = min(width, xmin + face_width)
50
+ ymax = min(height, ymin + face_height)
51
+ image = image[ymin:ymax, xmin:xmax]
52
+
53
+ return image
54
+
55
+ def detect_video(self, video_path, real: bool = True):
56
+ vr = VideoReader(video_path)
57
+ video_frames = vr[20:36].asnumpy() # Use one frame per second
58
+ vr.seek(0) # avoid memory leak
59
+ faces = []
60
+ for frame in video_frames:
61
+ face = self.detect_face(frame)
62
+ face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
63
+ faces.append(face)
64
+
65
+ if len(faces) != 16:
66
+ return None
67
+ faces = np.stack(faces, axis=0) # (f, h, w, c)
68
+ faces = torch.from_numpy(faces)
69
+ return faces
70
+
71
+
72
+ def eval_fvd(real_videos_dir, fake_videos_dir):
73
+ fvd = FVD()
74
+ real_features_list = []
75
+ fake_features_list = []
76
+ for file in tqdm.tqdm(os.listdir(fake_videos_dir)):
77
+ if file.endswith(".mp4"):
78
+ real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4"))
79
+ fake_video_path = os.path.join(fake_videos_dir, file)
80
+ real_features = fvd.detect_video(real_video_path, real=True)
81
+ fake_features = fvd.detect_video(fake_video_path, real=False)
82
+ if real_features is None or fake_features is None:
83
+ continue
84
+ real_features_list.append(real_features)
85
+ fake_features_list.append(fake_features)
86
+
87
+ real_features = torch.stack(real_features_list) / 255.0
88
+ fake_features = torch.stack(fake_features_list) / 255.0
89
+ print(compute_our_fvd(real_features, fake_features, device="cpu"))
90
+
91
+
92
+ if __name__ == "__main__":
93
+ real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross"
94
+ fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross"
95
+
96
+ eval_fvd(real_videos_dir, fake_videos_dir)
eval/eval_sync_conf.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ import os
17
+ import tqdm
18
+ from statistics import fmean
19
+ from eval.syncnet import SyncNetEval
20
+ from eval.syncnet_detect import SyncNetDetector
21
+ from latentsync.utils.util import red_text
22
+ import torch
23
+
24
+
25
+ def syncnet_eval(syncnet, syncnet_detector, video_path, temp_dir, detect_results_dir="detect_results"):
26
+ syncnet_detector(video_path=video_path, min_track=50)
27
+ crop_videos = os.listdir(os.path.join(detect_results_dir, "crop"))
28
+ if crop_videos == []:
29
+ raise Exception(red_text(f"Face not detected in {video_path}"))
30
+ av_offset_list = []
31
+ conf_list = []
32
+ for video in crop_videos:
33
+ av_offset, _, conf = syncnet.evaluate(
34
+ video_path=os.path.join(detect_results_dir, "crop", video), temp_dir=temp_dir
35
+ )
36
+ av_offset_list.append(av_offset)
37
+ conf_list.append(conf)
38
+ av_offset = int(fmean(av_offset_list))
39
+ conf = fmean(conf_list)
40
+ print(f"Input video: {video_path}\nSyncNet confidence: {conf:.2f}\nAV offset: {av_offset}")
41
+ return av_offset, conf
42
+
43
+
44
+ def main():
45
+ parser = argparse.ArgumentParser(description="SyncNet")
46
+ parser.add_argument("--initial_model", type=str, default="checkpoints/auxiliary/syncnet_v2.model", help="")
47
+ parser.add_argument("--video_path", type=str, default=None, help="")
48
+ parser.add_argument("--videos_dir", type=str, default="/root/processed")
49
+ parser.add_argument("--temp_dir", type=str, default="temp", help="")
50
+
51
+ args = parser.parse_args()
52
+
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+
55
+ syncnet = SyncNetEval(device=device)
56
+ syncnet.loadParameters(args.initial_model)
57
+
58
+ syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
59
+
60
+ if args.video_path is not None:
61
+ syncnet_eval(syncnet, syncnet_detector, args.video_path, args.temp_dir)
62
+ else:
63
+ sync_conf_list = []
64
+ video_names = sorted([f for f in os.listdir(args.videos_dir) if f.endswith(".mp4")])
65
+ for video_name in tqdm.tqdm(video_names):
66
+ try:
67
+ _, conf = syncnet_eval(
68
+ syncnet, syncnet_detector, os.path.join(args.videos_dir, video_name), args.temp_dir
69
+ )
70
+ sync_conf_list.append(conf)
71
+ except Exception as e:
72
+ print(e)
73
+ print(f"The average sync confidence is {fmean(sync_conf_list):.02f}")
74
+
75
+
76
+ if __name__ == "__main__":
77
+ main()
eval/eval_sync_conf.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!/bin/bash
2
+ python -m eval.eval_sync_conf --video_path "RD_Radio1_000_006_out.mp4"
eval/eval_syncnet_acc.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ from tqdm.auto import tqdm
17
+ import torch
18
+ import torch.nn as nn
19
+ from einops import rearrange
20
+ from latentsync.models.syncnet import SyncNet
21
+ from latentsync.data.syncnet_dataset import SyncNetDataset
22
+ from diffusers import AutoencoderKL
23
+ from omegaconf import OmegaConf
24
+ from accelerate.utils import set_seed
25
+
26
+
27
+ def main(config):
28
+ set_seed(config.run.seed)
29
+
30
+ device = "cuda" if torch.cuda.is_available() else "cpu"
31
+
32
+ if config.data.latent_space:
33
+ vae = AutoencoderKL.from_pretrained(
34
+ "runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
35
+ )
36
+ vae.requires_grad_(False)
37
+ vae.to(device)
38
+
39
+ # Dataset and Dataloader setup
40
+ dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
41
+
42
+ test_dataloader = torch.utils.data.DataLoader(
43
+ dataset,
44
+ batch_size=config.data.batch_size,
45
+ shuffle=False,
46
+ num_workers=config.data.num_workers,
47
+ drop_last=False,
48
+ worker_init_fn=dataset.worker_init_fn,
49
+ )
50
+
51
+ # Model
52
+ syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
53
+
54
+ print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
55
+ checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
56
+
57
+ syncnet.load_state_dict(checkpoint["state_dict"])
58
+ syncnet.to(dtype=torch.float16)
59
+ syncnet.requires_grad_(False)
60
+ syncnet.eval()
61
+
62
+ global_step = 0
63
+ num_val_batches = config.data.num_val_samples // config.data.batch_size
64
+ progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
65
+
66
+ num_correct_preds = 0
67
+ num_total_preds = 0
68
+
69
+ while True:
70
+ for step, batch in enumerate(test_dataloader):
71
+ ### >>>> Test >>>> ###
72
+
73
+ frames = batch["frames"].to(device, dtype=torch.float16)
74
+ audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
75
+ y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
76
+
77
+ if config.data.latent_space:
78
+ frames = rearrange(frames, "b f c h w -> (b f) c h w")
79
+
80
+ with torch.no_grad():
81
+ frames = vae.encode(frames).latent_dist.sample() * 0.18215
82
+
83
+ frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
84
+ else:
85
+ frames = rearrange(frames, "b f c h w -> b (f c) h w")
86
+
87
+ if config.data.lower_half:
88
+ height = frames.shape[2]
89
+ frames = frames[:, :, height // 2 :, :]
90
+
91
+ with torch.no_grad():
92
+ vision_embeds, audio_embeds = syncnet(frames, audio_samples)
93
+
94
+ sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
95
+
96
+ preds = (sims > 0.5).to(dtype=torch.float16)
97
+ num_correct_preds += (preds == y).sum().item()
98
+ num_total_preds += len(sims)
99
+
100
+ progress_bar.update(1)
101
+ global_step += 1
102
+
103
+ if global_step >= num_val_batches:
104
+ progress_bar.close()
105
+ print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
106
+ return
107
+
108
+
109
+ if __name__ == "__main__":
110
+ parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
111
+
112
+ parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
113
+ args = parser.parse_args()
114
+
115
+ # Load a configuration file
116
+ config = OmegaConf.load(args.config_path)
117
+
118
+ main(config)
eval/eval_syncnet_acc.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m eval.eval_syncnet_acc --config_path "configs/syncnet/syncnet_16_pixel.yaml"
eval/fvd.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py
2
+
3
+ from typing import Tuple
4
+ import scipy
5
+ import numpy as np
6
+ import torch
7
+
8
+
9
+ def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float:
10
+ mu_gen, sigma_gen = compute_stats(feats_fake)
11
+ mu_real, sigma_real = compute_stats(feats_real)
12
+
13
+ m = np.square(mu_gen - mu_real).sum()
14
+ s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
15
+ fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
16
+
17
+ return float(fid)
18
+
19
+
20
+ def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
21
+ mu = feats.mean(axis=0) # [d]
22
+ sigma = np.cov(feats, rowvar=False) # [d, d]
23
+
24
+ return mu, sigma
25
+
26
+
27
+ @torch.no_grad()
28
+ def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float:
29
+ i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt"
30
+ i3d_kwargs = dict(
31
+ rescale=False, resize=False, return_features=True
32
+ ) # Return raw features before the softmax layer.
33
+
34
+ with open(i3d_path, "rb") as f:
35
+ i3d_model = torch.jit.load(f).eval().to(device)
36
+
37
+ videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device)
38
+ videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device)
39
+
40
+ feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy()
41
+ feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy()
42
+
43
+ return compute_fvd(feats_fake, feats_real)
44
+
45
+
46
+ def main():
47
+ # input shape: (b, f, h, w, c)
48
+ videos_fake = torch.rand(10, 16, 224, 224, 3)
49
+ videos_real = torch.rand(10, 16, 224, 224, 3)
50
+
51
+ our_fvd_result = compute_our_fvd(videos_fake, videos_real)
52
+ print(f"[FVD scores] Ours: {our_fvd_result}")
53
+
54
+
55
+ if __name__ == "__main__":
56
+ main()
eval/hyper_iqa.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
2
+
3
+ import torch as torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+ from torch.nn import init
7
+ import math
8
+ import torch.utils.model_zoo as model_zoo
9
+
10
+ model_urls = {
11
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
12
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
13
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
14
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
15
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
16
+ }
17
+
18
+
19
+ class HyperNet(nn.Module):
20
+ """
21
+ Hyper network for learning perceptual rules.
22
+
23
+ Args:
24
+ lda_out_channels: local distortion aware module output size.
25
+ hyper_in_channels: input feature channels for hyper network.
26
+ target_in_size: input vector size for target network.
27
+ target_fc(i)_size: fully connection layer size of target network.
28
+ feature_size: input feature map width/height for hyper network.
29
+
30
+ Note:
31
+ For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
32
+
33
+ """
34
+ def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
35
+ super(HyperNet, self).__init__()
36
+
37
+ self.hyperInChn = hyper_in_channels
38
+ self.target_in_size = target_in_size
39
+ self.f1 = target_fc1_size
40
+ self.f2 = target_fc2_size
41
+ self.f3 = target_fc3_size
42
+ self.f4 = target_fc4_size
43
+ self.feature_size = feature_size
44
+
45
+ self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
46
+
47
+ self.pool = nn.AdaptiveAvgPool2d((1, 1))
48
+
49
+ # Conv layers for resnet output features
50
+ self.conv1 = nn.Sequential(
51
+ nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
52
+ nn.ReLU(inplace=True),
53
+ nn.Conv2d(1024, 512, 1, padding=(0, 0)),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
56
+ nn.ReLU(inplace=True)
57
+ )
58
+
59
+ # Hyper network part, conv for generating target fc weights, fc for generating target fc biases
60
+ self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
61
+ self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
62
+
63
+ self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
64
+ self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
65
+
66
+ self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
67
+ self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
68
+
69
+ self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
70
+ self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
71
+
72
+ self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
73
+ self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
74
+
75
+ # initialize
76
+ for i, m_name in enumerate(self._modules):
77
+ if i > 2:
78
+ nn.init.kaiming_normal_(self._modules[m_name].weight.data)
79
+
80
+ def forward(self, img):
81
+ feature_size = self.feature_size
82
+
83
+ res_out = self.res(img)
84
+
85
+ # input vector for target net
86
+ target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
87
+
88
+ # input features for hyper net
89
+ hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
90
+
91
+ # generating target net weights & biases
92
+ target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
93
+ target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
94
+
95
+ target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
96
+ target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
97
+
98
+ target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
99
+ target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
100
+
101
+ target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
102
+ target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
103
+
104
+ target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
105
+ target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
106
+
107
+ out = {}
108
+ out['target_in_vec'] = target_in_vec
109
+ out['target_fc1w'] = target_fc1w
110
+ out['target_fc1b'] = target_fc1b
111
+ out['target_fc2w'] = target_fc2w
112
+ out['target_fc2b'] = target_fc2b
113
+ out['target_fc3w'] = target_fc3w
114
+ out['target_fc3b'] = target_fc3b
115
+ out['target_fc4w'] = target_fc4w
116
+ out['target_fc4b'] = target_fc4b
117
+ out['target_fc5w'] = target_fc5w
118
+ out['target_fc5b'] = target_fc5b
119
+
120
+ return out
121
+
122
+
123
+ class TargetNet(nn.Module):
124
+ """
125
+ Target network for quality prediction.
126
+ """
127
+ def __init__(self, paras):
128
+ super(TargetNet, self).__init__()
129
+ self.l1 = nn.Sequential(
130
+ TargetFC(paras['target_fc1w'], paras['target_fc1b']),
131
+ nn.Sigmoid(),
132
+ )
133
+ self.l2 = nn.Sequential(
134
+ TargetFC(paras['target_fc2w'], paras['target_fc2b']),
135
+ nn.Sigmoid(),
136
+ )
137
+
138
+ self.l3 = nn.Sequential(
139
+ TargetFC(paras['target_fc3w'], paras['target_fc3b']),
140
+ nn.Sigmoid(),
141
+ )
142
+
143
+ self.l4 = nn.Sequential(
144
+ TargetFC(paras['target_fc4w'], paras['target_fc4b']),
145
+ nn.Sigmoid(),
146
+ TargetFC(paras['target_fc5w'], paras['target_fc5b']),
147
+ )
148
+
149
+ def forward(self, x):
150
+ q = self.l1(x)
151
+ # q = F.dropout(q)
152
+ q = self.l2(q)
153
+ q = self.l3(q)
154
+ q = self.l4(q).squeeze()
155
+ return q
156
+
157
+
158
+ class TargetFC(nn.Module):
159
+ """
160
+ Fully connection operations for target net
161
+
162
+ Note:
163
+ Weights & biases are different for different images in a batch,
164
+ thus here we use group convolution for calculating images in a batch with individual weights & biases.
165
+ """
166
+ def __init__(self, weight, bias):
167
+ super(TargetFC, self).__init__()
168
+ self.weight = weight
169
+ self.bias = bias
170
+
171
+ def forward(self, input_):
172
+
173
+ input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
174
+ weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
175
+ bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
176
+ out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
177
+
178
+ return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
179
+
180
+
181
+ class Bottleneck(nn.Module):
182
+ expansion = 4
183
+
184
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
185
+ super(Bottleneck, self).__init__()
186
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
187
+ self.bn1 = nn.BatchNorm2d(planes)
188
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
189
+ padding=1, bias=False)
190
+ self.bn2 = nn.BatchNorm2d(planes)
191
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
192
+ self.bn3 = nn.BatchNorm2d(planes * 4)
193
+ self.relu = nn.ReLU(inplace=True)
194
+ self.downsample = downsample
195
+ self.stride = stride
196
+
197
+ def forward(self, x):
198
+ residual = x
199
+
200
+ out = self.conv1(x)
201
+ out = self.bn1(out)
202
+ out = self.relu(out)
203
+
204
+ out = self.conv2(out)
205
+ out = self.bn2(out)
206
+ out = self.relu(out)
207
+
208
+ out = self.conv3(out)
209
+ out = self.bn3(out)
210
+
211
+ if self.downsample is not None:
212
+ residual = self.downsample(x)
213
+
214
+ out += residual
215
+ out = self.relu(out)
216
+
217
+ return out
218
+
219
+
220
+ class ResNetBackbone(nn.Module):
221
+
222
+ def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
223
+ super(ResNetBackbone, self).__init__()
224
+ self.inplanes = 64
225
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
226
+ self.bn1 = nn.BatchNorm2d(64)
227
+ self.relu = nn.ReLU(inplace=True)
228
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
229
+ self.layer1 = self._make_layer(block, 64, layers[0])
230
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
231
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
232
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
233
+
234
+ # local distortion aware module
235
+ self.lda1_pool = nn.Sequential(
236
+ nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
237
+ nn.AvgPool2d(7, stride=7),
238
+ )
239
+ self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
240
+
241
+ self.lda2_pool = nn.Sequential(
242
+ nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
243
+ nn.AvgPool2d(7, stride=7),
244
+ )
245
+ self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
246
+
247
+ self.lda3_pool = nn.Sequential(
248
+ nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
249
+ nn.AvgPool2d(7, stride=7),
250
+ )
251
+ self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
252
+
253
+ self.lda4_pool = nn.AvgPool2d(7, stride=7)
254
+ self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
255
+
256
+ for m in self.modules():
257
+ if isinstance(m, nn.Conv2d):
258
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
259
+ m.weight.data.normal_(0, math.sqrt(2. / n))
260
+ elif isinstance(m, nn.BatchNorm2d):
261
+ m.weight.data.fill_(1)
262
+ m.bias.data.zero_()
263
+
264
+ # initialize
265
+ nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
266
+ nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
267
+ nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
268
+ nn.init.kaiming_normal_(self.lda1_fc.weight.data)
269
+ nn.init.kaiming_normal_(self.lda2_fc.weight.data)
270
+ nn.init.kaiming_normal_(self.lda3_fc.weight.data)
271
+ nn.init.kaiming_normal_(self.lda4_fc.weight.data)
272
+
273
+ def _make_layer(self, block, planes, blocks, stride=1):
274
+ downsample = None
275
+ if stride != 1 or self.inplanes != planes * block.expansion:
276
+ downsample = nn.Sequential(
277
+ nn.Conv2d(self.inplanes, planes * block.expansion,
278
+ kernel_size=1, stride=stride, bias=False),
279
+ nn.BatchNorm2d(planes * block.expansion),
280
+ )
281
+
282
+ layers = []
283
+ layers.append(block(self.inplanes, planes, stride, downsample))
284
+ self.inplanes = planes * block.expansion
285
+ for i in range(1, blocks):
286
+ layers.append(block(self.inplanes, planes))
287
+
288
+ return nn.Sequential(*layers)
289
+
290
+ def forward(self, x):
291
+ x = self.conv1(x)
292
+ x = self.bn1(x)
293
+ x = self.relu(x)
294
+ x = self.maxpool(x)
295
+ x = self.layer1(x)
296
+
297
+ # the same effect as lda operation in the paper, but save much more memory
298
+ lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
299
+ x = self.layer2(x)
300
+ lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
301
+ x = self.layer3(x)
302
+ lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
303
+ x = self.layer4(x)
304
+ lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
305
+
306
+ vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
307
+
308
+ out = {}
309
+ out['hyper_in_feat'] = x
310
+ out['target_in_vec'] = vec
311
+
312
+ return out
313
+
314
+
315
+ def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
316
+ """Constructs a ResNet-50 model_hyper.
317
+
318
+ Args:
319
+ pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
320
+ """
321
+ model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
322
+ if pretrained:
323
+ save_model = model_zoo.load_url(model_urls['resnet50'])
324
+ model_dict = model.state_dict()
325
+ state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
326
+ model_dict.update(state_dict)
327
+ model.load_state_dict(model_dict)
328
+ else:
329
+ model.apply(weights_init_xavier)
330
+ return model
331
+
332
+
333
+ def weights_init_xavier(m):
334
+ classname = m.__class__.__name__
335
+ # print(classname)
336
+ # if isinstance(m, nn.Conv2d):
337
+ if classname.find('Conv') != -1:
338
+ init.kaiming_normal_(m.weight.data)
339
+ elif classname.find('Linear') != -1:
340
+ init.kaiming_normal_(m.weight.data)
341
+ elif classname.find('BatchNorm2d') != -1:
342
+ init.uniform_(m.weight.data, 1.0, 0.02)
343
+ init.constant_(m.bias.data, 0.0)
eval/inference_videos.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ from tqdm import tqdm
18
+
19
+
20
+ def inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path):
21
+ os.makedirs(output_dir, exist_ok=True)
22
+ video_names = sorted([f for f in os.listdir(input_dir) if f.endswith(".mp4")])
23
+ for video_name in tqdm(video_names):
24
+ video_path = os.path.join(input_dir, video_name)
25
+ audio_path = os.path.join(input_dir, video_name.replace(".mp4", "_audio.wav"))
26
+ video_out_path = os.path.join(output_dir, video_name.replace(".mp4", "_out.mp4"))
27
+ inference_command = f"python inference.py --unet_config_path {unet_config_path} --video_path {video_path} --audio_path {audio_path} --video_out_path {video_out_path} --inference_ckpt_path {ckpt_path} --seed 1247"
28
+ subprocess.run(inference_command, shell=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/cross"
33
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/latentsync_cross"
34
+ unet_config_path = "configs/unet/unet_latent_16_diffusion.yaml"
35
+ ckpt_path = "output/unet/train-2024_10_08-16:23:43/checkpoints/checkpoint-1920000.pt"
36
+
37
+ inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path)
eval/syncnet/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .syncnet_eval import SyncNetEval
eval/syncnet/syncnet.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ def save(model, filename):
8
+ with open(filename, "wb") as f:
9
+ torch.save(model, f)
10
+ print("%s saved." % filename)
11
+
12
+
13
+ def load(filename):
14
+ net = torch.load(filename)
15
+ return net
16
+
17
+
18
+ class S(nn.Module):
19
+ def __init__(self, num_layers_in_fc_layers=1024):
20
+ super(S, self).__init__()
21
+
22
+ self.__nFeatures__ = 24
23
+ self.__nChs__ = 32
24
+ self.__midChs__ = 32
25
+
26
+ self.netcnnaud = nn.Sequential(
27
+ nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
28
+ nn.BatchNorm2d(64),
29
+ nn.ReLU(inplace=True),
30
+ nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
31
+ nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
32
+ nn.BatchNorm2d(192),
33
+ nn.ReLU(inplace=True),
34
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
35
+ nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
36
+ nn.BatchNorm2d(384),
37
+ nn.ReLU(inplace=True),
38
+ nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
39
+ nn.BatchNorm2d(256),
40
+ nn.ReLU(inplace=True),
41
+ nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
42
+ nn.BatchNorm2d(256),
43
+ nn.ReLU(inplace=True),
44
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
45
+ nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
46
+ nn.BatchNorm2d(512),
47
+ nn.ReLU(),
48
+ )
49
+
50
+ self.netfcaud = nn.Sequential(
51
+ nn.Linear(512, 512),
52
+ nn.BatchNorm1d(512),
53
+ nn.ReLU(),
54
+ nn.Linear(512, num_layers_in_fc_layers),
55
+ )
56
+
57
+ self.netfclip = nn.Sequential(
58
+ nn.Linear(512, 512),
59
+ nn.BatchNorm1d(512),
60
+ nn.ReLU(),
61
+ nn.Linear(512, num_layers_in_fc_layers),
62
+ )
63
+
64
+ self.netcnnlip = nn.Sequential(
65
+ nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
66
+ nn.BatchNorm3d(96),
67
+ nn.ReLU(inplace=True),
68
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
69
+ nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
70
+ nn.BatchNorm3d(256),
71
+ nn.ReLU(inplace=True),
72
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
73
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
74
+ nn.BatchNorm3d(256),
75
+ nn.ReLU(inplace=True),
76
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
77
+ nn.BatchNorm3d(256),
78
+ nn.ReLU(inplace=True),
79
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
80
+ nn.BatchNorm3d(256),
81
+ nn.ReLU(inplace=True),
82
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
83
+ nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
84
+ nn.BatchNorm3d(512),
85
+ nn.ReLU(inplace=True),
86
+ )
87
+
88
+ def forward_aud(self, x):
89
+
90
+ mid = self.netcnnaud(x)
91
+ # N x ch x 24 x M
92
+ mid = mid.view((mid.size()[0], -1))
93
+ # N x (ch x 24)
94
+ out = self.netfcaud(mid)
95
+
96
+ return out
97
+
98
+ def forward_lip(self, x):
99
+
100
+ mid = self.netcnnlip(x)
101
+ mid = mid.view((mid.size()[0], -1))
102
+ # N x (ch x 24)
103
+ out = self.netfclip(mid)
104
+
105
+ return out
106
+
107
+ def forward_lipfeat(self, x):
108
+
109
+ mid = self.netcnnlip(x)
110
+ out = mid.view((mid.size()[0], -1))
111
+ # N x (ch x 24)
112
+
113
+ return out
eval/syncnet/syncnet_eval.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
2
+
3
+ import torch
4
+ import numpy
5
+ import time, pdb, argparse, subprocess, os, math, glob
6
+ import cv2
7
+ import python_speech_features
8
+
9
+ from scipy import signal
10
+ from scipy.io import wavfile
11
+ from .syncnet import S
12
+ from shutil import rmtree
13
+
14
+
15
+ # ==================== Get OFFSET ====================
16
+
17
+ # Video 25 FPS, Audio 16000HZ
18
+
19
+
20
+ def calc_pdist(feat1, feat2, vshift=10):
21
+ win_size = vshift * 2 + 1
22
+
23
+ feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
24
+
25
+ dists = []
26
+
27
+ for i in range(0, len(feat1)):
28
+
29
+ dists.append(
30
+ torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
31
+ )
32
+
33
+ return dists
34
+
35
+
36
+ # ==================== MAIN DEF ====================
37
+
38
+
39
+ class SyncNetEval(torch.nn.Module):
40
+ def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
41
+ super().__init__()
42
+
43
+ self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
44
+ self.device = device
45
+
46
+ def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
47
+
48
+ self.__S__.eval()
49
+
50
+ # ========== ==========
51
+ # Convert files
52
+ # ========== ==========
53
+
54
+ if os.path.exists(temp_dir):
55
+ rmtree(temp_dir)
56
+
57
+ os.makedirs(temp_dir)
58
+
59
+ # temp_video_path = os.path.join(temp_dir, "temp.mp4")
60
+ # command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
61
+ # subprocess.call(command, shell=True)
62
+
63
+ command = (
64
+ f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
65
+ )
66
+ subprocess.call(command, shell=True, stdout=None)
67
+
68
+ command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
69
+ subprocess.call(command, shell=True, stdout=None)
70
+
71
+ # ========== ==========
72
+ # Load video
73
+ # ========== ==========
74
+
75
+ images = []
76
+
77
+ flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
78
+ flist.sort()
79
+
80
+ for fname in flist:
81
+ img_input = cv2.imread(fname)
82
+ img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
83
+ images.append(img_input)
84
+
85
+ im = numpy.stack(images, axis=3)
86
+ im = numpy.expand_dims(im, axis=0)
87
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
88
+
89
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
90
+
91
+ # ========== ==========
92
+ # Load audio
93
+ # ========== ==========
94
+
95
+ sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
96
+ mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
97
+ mfcc = numpy.stack([numpy.array(i) for i in mfcc])
98
+
99
+ cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
100
+ cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
101
+
102
+ # ========== ==========
103
+ # Check audio and video input length
104
+ # ========== ==========
105
+
106
+ # if (float(len(audio)) / 16000) != (float(len(images)) / 25):
107
+ # print(
108
+ # "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
109
+ # % (float(len(audio)) / 16000, float(len(images)) / 25)
110
+ # )
111
+
112
+ min_length = min(len(images), math.floor(len(audio) / 640))
113
+
114
+ # ========== ==========
115
+ # Generate video and audio feats
116
+ # ========== ==========
117
+
118
+ lastframe = min_length - 5
119
+ im_feat = []
120
+ cc_feat = []
121
+
122
+ tS = time.time()
123
+ for i in range(0, lastframe, batch_size):
124
+
125
+ im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
126
+ im_in = torch.cat(im_batch, 0)
127
+ im_out = self.__S__.forward_lip(im_in.to(self.device))
128
+ im_feat.append(im_out.data.cpu())
129
+
130
+ cc_batch = [
131
+ cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
132
+ ]
133
+ cc_in = torch.cat(cc_batch, 0)
134
+ cc_out = self.__S__.forward_aud(cc_in.to(self.device))
135
+ cc_feat.append(cc_out.data.cpu())
136
+
137
+ im_feat = torch.cat(im_feat, 0)
138
+ cc_feat = torch.cat(cc_feat, 0)
139
+
140
+ # ========== ==========
141
+ # Compute offset
142
+ # ========== ==========
143
+
144
+ dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
145
+ mean_dists = torch.mean(torch.stack(dists, 1), 1)
146
+
147
+ min_dist, minidx = torch.min(mean_dists, 0)
148
+
149
+ av_offset = vshift - minidx
150
+ conf = torch.median(mean_dists) - min_dist
151
+
152
+ fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
153
+ # fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
154
+ fconf = torch.median(mean_dists).numpy() - fdist
155
+ framewise_conf = signal.medfilt(fconf, kernel_size=9)
156
+
157
+ # numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
158
+ rmtree(temp_dir)
159
+ return av_offset.item(), min_dist.item(), conf.item()
160
+
161
+ def extract_feature(self, opt, videofile):
162
+
163
+ self.__S__.eval()
164
+
165
+ # ========== ==========
166
+ # Load video
167
+ # ========== ==========
168
+ cap = cv2.VideoCapture(videofile)
169
+
170
+ frame_num = 1
171
+ images = []
172
+ while frame_num:
173
+ frame_num += 1
174
+ ret, image = cap.read()
175
+ if ret == 0:
176
+ break
177
+
178
+ images.append(image)
179
+
180
+ im = numpy.stack(images, axis=3)
181
+ im = numpy.expand_dims(im, axis=0)
182
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
183
+
184
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
185
+
186
+ # ========== ==========
187
+ # Generate video feats
188
+ # ========== ==========
189
+
190
+ lastframe = len(images) - 4
191
+ im_feat = []
192
+
193
+ tS = time.time()
194
+ for i in range(0, lastframe, opt.batch_size):
195
+
196
+ im_batch = [
197
+ imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
198
+ ]
199
+ im_in = torch.cat(im_batch, 0)
200
+ im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
201
+ im_feat.append(im_out.data.cpu())
202
+
203
+ im_feat = torch.cat(im_feat, 0)
204
+
205
+ # ========== ==========
206
+ # Compute offset
207
+ # ========== ==========
208
+
209
+ print("Compute time %.3f sec." % (time.time() - tS))
210
+
211
+ return im_feat
212
+
213
+ def loadParameters(self, path):
214
+ loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
215
+
216
+ self_state = self.__S__.state_dict()
217
+
218
+ for name, param in loaded_state.items():
219
+
220
+ self_state[name].copy_(param)
eval/syncnet_detect.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
2
+
3
+ import os, pdb, subprocess, glob, cv2
4
+ import numpy as np
5
+ from shutil import rmtree
6
+ import torch
7
+
8
+ from scenedetect.video_manager import VideoManager
9
+ from scenedetect.scene_manager import SceneManager
10
+ from scenedetect.stats_manager import StatsManager
11
+ from scenedetect.detectors import ContentDetector
12
+
13
+ from scipy.interpolate import interp1d
14
+ from scipy.io import wavfile
15
+ from scipy import signal
16
+
17
+ from eval.detectors import S3FD
18
+
19
+
20
+ class SyncNetDetector:
21
+ def __init__(self, device, detect_results_dir="detect_results"):
22
+ self.s3f_detector = S3FD(device=device)
23
+ self.detect_results_dir = detect_results_dir
24
+
25
+ def __call__(self, video_path: str, min_track=50, scale=False):
26
+ crop_dir = os.path.join(self.detect_results_dir, "crop")
27
+ video_dir = os.path.join(self.detect_results_dir, "video")
28
+ frames_dir = os.path.join(self.detect_results_dir, "frames")
29
+ temp_dir = os.path.join(self.detect_results_dir, "temp")
30
+
31
+ # ========== DELETE EXISTING DIRECTORIES ==========
32
+ if os.path.exists(crop_dir):
33
+ rmtree(crop_dir)
34
+
35
+ if os.path.exists(video_dir):
36
+ rmtree(video_dir)
37
+
38
+ if os.path.exists(frames_dir):
39
+ rmtree(frames_dir)
40
+
41
+ if os.path.exists(temp_dir):
42
+ rmtree(temp_dir)
43
+
44
+ # ========== MAKE NEW DIRECTORIES ==========
45
+
46
+ os.makedirs(crop_dir)
47
+ os.makedirs(video_dir)
48
+ os.makedirs(frames_dir)
49
+ os.makedirs(temp_dir)
50
+
51
+ # ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
52
+
53
+ if scale:
54
+ scaled_video_path = os.path.join(video_dir, "scaled.mp4")
55
+ command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
56
+ subprocess.run(command, shell=True)
57
+ video_path = scaled_video_path
58
+
59
+ command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
60
+ subprocess.run(command, shell=True, stdout=None)
61
+
62
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
63
+ subprocess.run(command, shell=True, stdout=None)
64
+
65
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
66
+ subprocess.run(command, shell=True, stdout=None)
67
+
68
+ faces = self.detect_face(frames_dir)
69
+
70
+ scene = self.scene_detect(video_dir)
71
+
72
+ # Face tracking
73
+ alltracks = []
74
+
75
+ for shot in scene:
76
+ if shot[1].frame_num - shot[0].frame_num >= min_track:
77
+ alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
78
+
79
+ # Face crop
80
+ for ii, track in enumerate(alltracks):
81
+ self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
82
+
83
+ rmtree(temp_dir)
84
+
85
+ def scene_detect(self, video_dir):
86
+ video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
87
+ stats_manager = StatsManager()
88
+ scene_manager = SceneManager(stats_manager)
89
+ # Add ContentDetector algorithm (constructor takes detector options like threshold).
90
+ scene_manager.add_detector(ContentDetector())
91
+ base_timecode = video_manager.get_base_timecode()
92
+
93
+ video_manager.set_downscale_factor()
94
+
95
+ video_manager.start()
96
+
97
+ scene_manager.detect_scenes(frame_source=video_manager)
98
+
99
+ scene_list = scene_manager.get_scene_list(base_timecode)
100
+
101
+ if scene_list == []:
102
+ scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
103
+
104
+ return scene_list
105
+
106
+ def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
107
+
108
+ iouThres = 0.5 # Minimum IOU between consecutive face detections
109
+ tracks = []
110
+
111
+ while True:
112
+ track = []
113
+ for framefaces in scenefaces:
114
+ for face in framefaces:
115
+ if track == []:
116
+ track.append(face)
117
+ framefaces.remove(face)
118
+ elif face["frame"] - track[-1]["frame"] <= num_failed_det:
119
+ iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
120
+ if iou > iouThres:
121
+ track.append(face)
122
+ framefaces.remove(face)
123
+ continue
124
+ else:
125
+ break
126
+
127
+ if track == []:
128
+ break
129
+ elif len(track) > min_track:
130
+
131
+ framenum = np.array([f["frame"] for f in track])
132
+ bboxes = np.array([np.array(f["bbox"]) for f in track])
133
+
134
+ frame_i = np.arange(framenum[0], framenum[-1] + 1)
135
+
136
+ bboxes_i = []
137
+ for ij in range(0, 4):
138
+ interpfn = interp1d(framenum, bboxes[:, ij])
139
+ bboxes_i.append(interpfn(frame_i))
140
+ bboxes_i = np.stack(bboxes_i, axis=1)
141
+
142
+ if (
143
+ max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
144
+ > min_face_size
145
+ ):
146
+ tracks.append({"frame": frame_i, "bbox": bboxes_i})
147
+
148
+ return tracks
149
+
150
+ def detect_face(self, frames_dir, facedet_scale=0.25):
151
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
152
+ flist.sort()
153
+
154
+ dets = []
155
+
156
+ for fidx, fname in enumerate(flist):
157
+ image = cv2.imread(fname)
158
+
159
+ image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
160
+ bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
161
+
162
+ dets.append([])
163
+ for bbox in bboxes:
164
+ dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
165
+
166
+ return dets
167
+
168
+ def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
169
+
170
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
171
+ flist.sort()
172
+
173
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
174
+ vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
175
+
176
+ dets = {"x": [], "y": [], "s": []}
177
+
178
+ for det in track["bbox"]:
179
+
180
+ dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
181
+ dets["y"].append((det[1] + det[3]) / 2) # crop center x
182
+ dets["x"].append((det[0] + det[2]) / 2) # crop center y
183
+
184
+ # Smooth detections
185
+ dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
186
+ dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
187
+ dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
188
+
189
+ for fidx, frame in enumerate(track["frame"]):
190
+
191
+ cs = crop_scale
192
+
193
+ bs = dets["s"][fidx] # Detection box size
194
+ bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
195
+
196
+ image = cv2.imread(flist[frame])
197
+
198
+ frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
199
+ my = dets["y"][fidx] + bsi # BBox center Y
200
+ mx = dets["x"][fidx] + bsi # BBox center X
201
+
202
+ face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
203
+
204
+ vOut.write(cv2.resize(face, (224, 224)))
205
+
206
+ audiotmp = os.path.join(temp_dir, "audio.wav")
207
+ audiostart = (track["frame"][0]) / frame_rate
208
+ audioend = (track["frame"][-1] + 1) / frame_rate
209
+
210
+ vOut.release()
211
+
212
+ # ========== CROP AUDIO FILE ==========
213
+
214
+ command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
215
+ os.path.join(video_dir, "audio.wav"),
216
+ audiostart,
217
+ audioend,
218
+ audiotmp,
219
+ )
220
+ output = subprocess.run(command, shell=True, stdout=None)
221
+
222
+ sample_rate, audio = wavfile.read(audiotmp)
223
+
224
+ # ========== COMBINE AUDIO AND VIDEO FILES ==========
225
+
226
+ command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
227
+ cropfile,
228
+ audiotmp,
229
+ cropfile,
230
+ )
231
+ output = subprocess.run(command, shell=True, stdout=None)
232
+
233
+ os.remove(cropfile + "t.mp4")
234
+
235
+ return {"track": track, "proc_track": dets}
236
+
237
+
238
+ def bounding_box_iou(boxA, boxB):
239
+ xA = max(boxA[0], boxB[0])
240
+ yA = max(boxA[1], boxB[1])
241
+ xB = min(boxA[2], boxB[2])
242
+ yB = min(boxA[3], boxB[3])
243
+
244
+ interArea = max(0, xB - xA) * max(0, yB - yA)
245
+
246
+ boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
247
+ boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
248
+
249
+ iou = interArea / float(boxAArea + boxBArea - interArea)
250
+
251
+ return iou
inference.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m scripts.inference \
4
+ --unet_config_path "configs/unet/second_stage.yaml" \
5
+ --inference_ckpt_path "checkpoints/latentsync_unet.pt" \
6
+ --guidance_scale 1.0 \
7
+ --video_path "assets/demo1_video.mp4" \
8
+ --audio_path "assets/demo1_audio.wav" \
9
+ --video_out_path "video_out.mp4"
pipelines/lipsync_pipeline.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
2
+
3
+ import inspect
4
+ import os
5
+ import shutil
6
+ from typing import Callable, List, Optional, Union
7
+ import subprocess
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torchvision
12
+
13
+ from diffusers.utils import is_accelerate_available
14
+ from packaging import version
15
+
16
+ from diffusers.configuration_utils import FrozenDict
17
+ from diffusers.models import AutoencoderKL
18
+ from diffusers.pipeline_utils import DiffusionPipeline
19
+ from diffusers.schedulers import (
20
+ DDIMScheduler,
21
+ DPMSolverMultistepScheduler,
22
+ EulerAncestralDiscreteScheduler,
23
+ EulerDiscreteScheduler,
24
+ LMSDiscreteScheduler,
25
+ PNDMScheduler,
26
+ )
27
+ from diffusers.utils import deprecate, logging
28
+
29
+ from einops import rearrange
30
+
31
+ from ..models.unet import UNet3DConditionModel
32
+ from ..utils.image_processor import ImageProcessor
33
+ from ..utils.util import read_video, read_audio, write_video
34
+ from ..whisper.audio2feature import Audio2Feature
35
+ import tqdm
36
+ import soundfile as sf
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ class LipsyncPipeline(DiffusionPipeline):
42
+ _optional_components = []
43
+
44
+ def __init__(
45
+ self,
46
+ vae: AutoencoderKL,
47
+ audio_encoder: Audio2Feature,
48
+ unet: UNet3DConditionModel,
49
+ scheduler: Union[
50
+ DDIMScheduler,
51
+ PNDMScheduler,
52
+ LMSDiscreteScheduler,
53
+ EulerDiscreteScheduler,
54
+ EulerAncestralDiscreteScheduler,
55
+ DPMSolverMultistepScheduler,
56
+ ],
57
+ ):
58
+ super().__init__()
59
+
60
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
+ deprecation_message = (
62
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
+ " file"
68
+ )
69
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
+ new_config = dict(scheduler.config)
71
+ new_config["steps_offset"] = 1
72
+ scheduler._internal_dict = FrozenDict(new_config)
73
+
74
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
+ deprecation_message = (
76
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
+ )
82
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
+ new_config = dict(scheduler.config)
84
+ new_config["clip_sample"] = False
85
+ scheduler._internal_dict = FrozenDict(new_config)
86
+
87
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
+ version.parse(unet.config._diffusers_version).base_version
89
+ ) < version.parse("0.9.0.dev0")
90
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
+ deprecation_message = (
93
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
94
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
+ " the `unet/config.json` file"
102
+ )
103
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
+ new_config = dict(unet.config)
105
+ new_config["sample_size"] = 64
106
+ unet._internal_dict = FrozenDict(new_config)
107
+
108
+ self.register_modules(
109
+ vae=vae,
110
+ audio_encoder=audio_encoder,
111
+ unet=unet,
112
+ scheduler=scheduler,
113
+ )
114
+
115
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
+
117
+ self.set_progress_bar_config(desc="Steps")
118
+
119
+ def enable_vae_slicing(self):
120
+ self.vae.enable_slicing()
121
+
122
+ def disable_vae_slicing(self):
123
+ self.vae.disable_slicing()
124
+
125
+ def enable_sequential_cpu_offload(self, gpu_id=0):
126
+ if is_accelerate_available():
127
+ from accelerate import cpu_offload
128
+ else:
129
+ raise ImportError("Please install accelerate via `pip install accelerate`")
130
+
131
+ device = torch.device(f"cuda:{gpu_id}")
132
+
133
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
134
+ if cpu_offloaded_model is not None:
135
+ cpu_offload(cpu_offloaded_model, device)
136
+
137
+ @property
138
+ def _execution_device(self):
139
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
140
+ return self.device
141
+ for module in self.unet.modules():
142
+ if (
143
+ hasattr(module, "_hf_hook")
144
+ and hasattr(module._hf_hook, "execution_device")
145
+ and module._hf_hook.execution_device is not None
146
+ ):
147
+ return torch.device(module._hf_hook.execution_device)
148
+ return self.device
149
+
150
+ def decode_latents(self, latents):
151
+ latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
152
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
153
+ decoded_latents = self.vae.decode(latents).sample
154
+ return decoded_latents
155
+
156
+ def prepare_extra_step_kwargs(self, generator, eta):
157
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
158
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
159
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
160
+ # and should be between [0, 1]
161
+
162
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
163
+ extra_step_kwargs = {}
164
+ if accepts_eta:
165
+ extra_step_kwargs["eta"] = eta
166
+
167
+ # check if the scheduler accepts generator
168
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
169
+ if accepts_generator:
170
+ extra_step_kwargs["generator"] = generator
171
+ return extra_step_kwargs
172
+
173
+ def check_inputs(self, height, width, callback_steps):
174
+ assert height == width, "Height and width must be equal"
175
+
176
+ if height % 8 != 0 or width % 8 != 0:
177
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
178
+
179
+ if (callback_steps is None) or (
180
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
181
+ ):
182
+ raise ValueError(
183
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
184
+ f" {type(callback_steps)}."
185
+ )
186
+
187
+ def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
188
+ shape = (
189
+ batch_size,
190
+ num_channels_latents,
191
+ 1,
192
+ height // self.vae_scale_factor,
193
+ width // self.vae_scale_factor,
194
+ )
195
+ rand_device = "cpu" if device.type == "mps" else device
196
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
197
+ latents = latents.repeat(1, 1, num_frames, 1, 1)
198
+
199
+ # scale the initial noise by the standard deviation required by the scheduler
200
+ latents = latents * self.scheduler.init_noise_sigma
201
+ return latents
202
+
203
+ def prepare_mask_latents(
204
+ self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
205
+ ):
206
+ # resize the mask to latents shape as we concatenate the mask to the latents
207
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
208
+ # and half precision
209
+ mask = torch.nn.functional.interpolate(
210
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
211
+ )
212
+ masked_image = masked_image.to(device=device, dtype=dtype)
213
+
214
+ # encode the mask image into latents space so we can concatenate it to the latents
215
+ masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
216
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
217
+
218
+ # aligning device to prevent device errors when concating it with the latent model input
219
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
220
+ mask = mask.to(device=device, dtype=dtype)
221
+
222
+ # assume batch size = 1
223
+ mask = rearrange(mask, "f c h w -> 1 c f h w")
224
+ masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
225
+
226
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
227
+ masked_image_latents = (
228
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
229
+ )
230
+ return mask, masked_image_latents
231
+
232
+ def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
233
+ images = images.to(device=device, dtype=dtype)
234
+ image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
235
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
236
+ image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
237
+ image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
238
+
239
+ return image_latents
240
+
241
+ def set_progress_bar_config(self, **kwargs):
242
+ if not hasattr(self, "_progress_bar_config"):
243
+ self._progress_bar_config = {}
244
+ self._progress_bar_config.update(kwargs)
245
+
246
+ @staticmethod
247
+ def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
248
+ # Paste the surrounding pixels back, because we only want to change the mouth region
249
+ pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
250
+ masks = masks.to(device=device, dtype=weight_dtype)
251
+ combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
252
+ return combined_pixel_values
253
+
254
+ @staticmethod
255
+ def pixel_values_to_images(pixel_values: torch.Tensor):
256
+ pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
257
+ pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
258
+ images = (pixel_values * 255).to(torch.uint8)
259
+ images = images.cpu().numpy()
260
+ return images
261
+
262
+ def affine_transform_video(self, video_path):
263
+ video_frames = read_video(video_path, use_decord=False)
264
+ faces = []
265
+ boxes = []
266
+ affine_matrices = []
267
+ print(f"Affine transforming {len(video_frames)} faces...")
268
+ for frame in tqdm.tqdm(video_frames):
269
+ face, box, affine_matrix = self.image_processor.affine_transform(frame)
270
+ faces.append(face)
271
+ boxes.append(box)
272
+ affine_matrices.append(affine_matrix)
273
+
274
+ faces = torch.stack(faces)
275
+ return faces, video_frames, boxes, affine_matrices
276
+
277
+ def restore_video(self, faces, video_frames, boxes, affine_matrices):
278
+ video_frames = video_frames[: faces.shape[0]]
279
+ out_frames = []
280
+ for index, face in enumerate(faces):
281
+ x1, y1, x2, y2 = boxes[index]
282
+ height = int(y2 - y1)
283
+ width = int(x2 - x1)
284
+ face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True)
285
+ face = rearrange(face, "c h w -> h w c")
286
+ face = (face / 2 + 0.5).clamp(0, 1)
287
+ face = (face * 255).to(torch.uint8).cpu().numpy()
288
+ out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
289
+ out_frames.append(out_frame)
290
+ return np.stack(out_frames, axis=0)
291
+
292
+ @torch.no_grad()
293
+ def __call__(
294
+ self,
295
+ video_path: str,
296
+ audio_path: str,
297
+ video_out_path: str,
298
+ video_mask_path: str = None,
299
+ num_frames: int = 16,
300
+ video_fps: int = 25,
301
+ audio_sample_rate: int = 16000,
302
+ height: Optional[int] = None,
303
+ width: Optional[int] = None,
304
+ num_inference_steps: int = 20,
305
+ guidance_scale: float = 1.5,
306
+ weight_dtype: Optional[torch.dtype] = torch.float16,
307
+ eta: float = 0.0,
308
+ mask: str = "fix_mask",
309
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
310
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
311
+ callback_steps: Optional[int] = 1,
312
+ **kwargs,
313
+ ):
314
+ is_train = self.unet.training
315
+ self.unet.eval()
316
+
317
+ # 0. Define call parameters
318
+ batch_size = 1
319
+ device = self._execution_device
320
+ self.image_processor = ImageProcessor(height, mask=mask, device="cuda")
321
+ self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
322
+
323
+ video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path)
324
+ audio_samples = read_audio(audio_path)
325
+
326
+ # 1. Default height and width to unet
327
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
328
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
329
+
330
+ # 2. Check inputs
331
+ self.check_inputs(height, width, callback_steps)
332
+
333
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
334
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
335
+ # corresponds to doing no classifier free guidance.
336
+ do_classifier_free_guidance = guidance_scale > 1.0
337
+
338
+ # 3. set timesteps
339
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
340
+ timesteps = self.scheduler.timesteps
341
+
342
+ # 4. Prepare extra step kwargs.
343
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
344
+
345
+ self.video_fps = video_fps
346
+
347
+ if self.unet.add_audio_layer:
348
+ whisper_feature = self.audio_encoder.audio2feat(audio_path)
349
+ whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
350
+
351
+ num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames
352
+ else:
353
+ num_inferences = len(video_frames) // num_frames
354
+
355
+ synced_video_frames = []
356
+ masked_video_frames = []
357
+
358
+ num_channels_latents = self.vae.config.latent_channels
359
+
360
+ # Prepare latent variables
361
+ all_latents = self.prepare_latents(
362
+ batch_size,
363
+ num_frames * num_inferences,
364
+ num_channels_latents,
365
+ height,
366
+ width,
367
+ weight_dtype,
368
+ device,
369
+ generator,
370
+ )
371
+
372
+ for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
373
+ if self.unet.add_audio_layer:
374
+ audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
375
+ audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
376
+ if do_classifier_free_guidance:
377
+ empty_audio_embeds = torch.zeros_like(audio_embeds)
378
+ audio_embeds = torch.cat([empty_audio_embeds, audio_embeds])
379
+ else:
380
+ audio_embeds = None
381
+ inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames]
382
+ latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
383
+ pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
384
+ inference_video_frames, affine_transform=False
385
+ )
386
+
387
+ # 7. Prepare mask latent variables
388
+ mask_latents, masked_image_latents = self.prepare_mask_latents(
389
+ masks,
390
+ masked_pixel_values,
391
+ height,
392
+ width,
393
+ weight_dtype,
394
+ device,
395
+ generator,
396
+ do_classifier_free_guidance,
397
+ )
398
+
399
+ # 8. Prepare image latents
400
+ image_latents = self.prepare_image_latents(
401
+ pixel_values,
402
+ device,
403
+ weight_dtype,
404
+ generator,
405
+ do_classifier_free_guidance,
406
+ )
407
+
408
+ # 9. Denoising loop
409
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
410
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
411
+ for j, t in enumerate(timesteps):
412
+ # expand the latents if we are doing classifier free guidance
413
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
414
+
415
+ # concat latents, mask, masked_image_latents in the channel dimension
416
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
417
+ latent_model_input = torch.cat(
418
+ [latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1
419
+ )
420
+
421
+ # predict the noise residual
422
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample
423
+
424
+ # perform guidance
425
+ if do_classifier_free_guidance:
426
+ noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
427
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
428
+
429
+ # compute the previous noisy sample x_t -> x_t-1
430
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
431
+
432
+ # call the callback, if provided
433
+ if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
434
+ progress_bar.update()
435
+ if callback is not None and j % callback_steps == 0:
436
+ callback(j, t, latents)
437
+
438
+ # Recover the pixel values
439
+ decoded_latents = self.decode_latents(latents)
440
+ decoded_latents = self.paste_surrounding_pixels_back(
441
+ decoded_latents, pixel_values, 1 - masks, device, weight_dtype
442
+ )
443
+ synced_video_frames.append(decoded_latents)
444
+ masked_video_frames.append(masked_pixel_values)
445
+
446
+ synced_video_frames = self.restore_video(
447
+ torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices
448
+ )
449
+ masked_video_frames = self.restore_video(
450
+ torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices
451
+ )
452
+
453
+ audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
454
+ audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
455
+
456
+ if is_train:
457
+ self.unet.train()
458
+
459
+ temp_dir = "temp"
460
+ if os.path.exists(temp_dir):
461
+ shutil.rmtree(temp_dir)
462
+ os.makedirs(temp_dir, exist_ok=True)
463
+
464
+ write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
465
+ # write_video(video_mask_path, masked_video_frames, fps=25)
466
+
467
+ sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
468
+
469
+ command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
470
+ subprocess.run(command, shell=True)
predict.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Prediction interface for Cog ⚙️
2
+ # https://cog.run/python
3
+
4
+ from cog import BasePredictor, Input, Path
5
+ import os
6
+ import time
7
+ import subprocess
8
+
9
+ MODEL_CACHE = "checkpoints"
10
+ MODEL_URL = "https://weights.replicate.delivery/default/chunyu-li/LatentSync/model.tar"
11
+
12
+ def download_weights(url, dest):
13
+ start = time.time()
14
+ print("downloading url: ", url)
15
+ print("downloading to: ", dest)
16
+ subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
17
+ print("downloading took: ", time.time() - start)
18
+
19
+ class Predictor(BasePredictor):
20
+ def setup(self) -> None:
21
+ """Load the model into memory to make running multiple predictions efficient"""
22
+ # Download the model weights
23
+ if not os.path.exists(MODEL_CACHE):
24
+ download_weights(MODEL_URL, MODEL_CACHE)
25
+
26
+ # Soft links for the auxiliary models
27
+ os.system("mkdir -p ~/.cache/torch/hub/checkpoints")
28
+ os.system("ln -s $(pwd)/checkpoints/auxiliary/2DFAN4-cd938726ad.zip ~/.cache/torch/hub/checkpoints/2DFAN4-cd938726ad.zip")
29
+ os.system("ln -s $(pwd)/checkpoints/auxiliary/s3fd-619a316812.pth ~/.cache/torch/hub/checkpoints/s3fd-619a316812.pth")
30
+ os.system("ln -s $(pwd)/checkpoints/auxiliary/vgg16-397923af.pth ~/.cache/torch/hub/checkpoints/vgg16-397923af.pth")
31
+
32
+ def predict(
33
+ self,
34
+ video: Path = Input(
35
+ description="Input video", default=None
36
+ ),
37
+ audio: Path = Input(
38
+ description="Input audio to ", default=None
39
+ ),
40
+ guidance_scale: float = Input(
41
+ description="Guidance scale", ge=0, le=10, default=1.0
42
+ ),
43
+ seed: int = Input(
44
+ description="Set to 0 for Random seed", default=0
45
+ )
46
+ ) -> Path:
47
+ """Run a single prediction on the model"""
48
+ if seed <= 0:
49
+ seed = int.from_bytes(os.urandom(2), "big")
50
+ print(f"Using seed: {seed}")
51
+
52
+ video_path = str(video)
53
+ audio_path = str(audio)
54
+ config_path = "configs/unet/second_stage.yaml"
55
+ ckpt_path = "checkpoints/latentsync_unet.pt"
56
+ output_path = "/tmp/video_out.mp4"
57
+
58
+ # Run the following command:
59
+ os.system(f"python -m scripts.inference --unet_config_path {config_path} --inference_ckpt_path {ckpt_path} --guidance_scale {str(guidance_scale)} --video_path {video_path} --audio_path {audio_path} --video_out_path {output_path} --seed {seed}")
60
+ return Path(output_path)
preprocess/affine_transform.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from latentsync.utils.util import read_video, write_video
16
+ from latentsync.utils.image_processor import ImageProcessor
17
+ import torch
18
+ from einops import rearrange
19
+ import os
20
+ import tqdm
21
+ import subprocess
22
+ from multiprocessing import Process
23
+ import shutil
24
+
25
+ paths = []
26
+
27
+
28
+ def gather_video_paths(input_dir, output_dir):
29
+ for video in sorted(os.listdir(input_dir)):
30
+ if video.endswith(".mp4"):
31
+ video_input = os.path.join(input_dir, video)
32
+ video_output = os.path.join(output_dir, video)
33
+ if os.path.isfile(video_output):
34
+ continue
35
+ paths.append((video_input, video_output))
36
+ elif os.path.isdir(os.path.join(input_dir, video)):
37
+ gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
38
+
39
+
40
+ class FaceDetector:
41
+ def __init__(self, resolution: int = 512, device: str = "cpu"):
42
+ self.image_processor = ImageProcessor(resolution, "fix_mask", device)
43
+
44
+ def affine_transform_video(self, video_path):
45
+ video_frames = read_video(video_path, change_fps=False)
46
+ results = []
47
+ for frame in video_frames:
48
+ frame, _, _ = self.image_processor.affine_transform(frame)
49
+ results.append(frame)
50
+ results = torch.stack(results)
51
+
52
+ results = rearrange(results, "f c h w -> f h w c").numpy()
53
+ return results
54
+
55
+ def close(self):
56
+ self.image_processor.close()
57
+
58
+
59
+ def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir):
60
+ video_name = os.path.basename(video_input_path)[:-4]
61
+ audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav")
62
+ video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4")
63
+
64
+ write_video(video_temp, video_frames, fps=25)
65
+
66
+ command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}"
67
+ subprocess.run(command, shell=True)
68
+
69
+ os.makedirs(os.path.dirname(video_output_path), exist_ok=True)
70
+ command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}"
71
+ subprocess.run(command, shell=True)
72
+
73
+ os.remove(audio_temp)
74
+ os.remove(video_temp)
75
+
76
+
77
+ def func(paths, process_temp_dir, device_id, resolution):
78
+ os.makedirs(process_temp_dir, exist_ok=True)
79
+ face_detector = FaceDetector(resolution, f"cuda:{device_id}")
80
+
81
+ for video_input, video_output in paths:
82
+ if os.path.isfile(video_output):
83
+ continue
84
+ try:
85
+ video_frames = face_detector.affine_transform_video(video_input)
86
+ except Exception as e: # Handle the exception of face not detcted
87
+ print(f"Exception: {e} - {video_input}")
88
+ continue
89
+
90
+ os.makedirs(os.path.dirname(video_output), exist_ok=True)
91
+ combine_video_audio(video_frames, video_input, video_output, process_temp_dir)
92
+ print(f"Saved: {video_output}")
93
+
94
+ face_detector.close()
95
+
96
+
97
+ def split(a, n):
98
+ k, m = divmod(len(a), n)
99
+ return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
100
+
101
+
102
+ def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers):
103
+ print(f"Recursively gathering video paths of {input_dir} ...")
104
+ gather_video_paths(input_dir, output_dir)
105
+ num_devices = torch.cuda.device_count()
106
+ if num_devices == 0:
107
+ raise RuntimeError("No GPUs found")
108
+
109
+ if os.path.exists(temp_dir):
110
+ shutil.rmtree(temp_dir)
111
+ os.makedirs(temp_dir, exist_ok=True)
112
+
113
+ split_paths = list(split(paths, num_workers * num_devices))
114
+
115
+ processes = []
116
+
117
+ for i in range(num_devices):
118
+ for j in range(num_workers):
119
+ process_index = i * num_workers + j
120
+ process = Process(
121
+ target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution)
122
+ )
123
+ process.start()
124
+ processes.append(process)
125
+
126
+ for process in processes:
127
+ process.join()
128
+
129
+
130
+ if __name__ == "__main__":
131
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train"
132
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train"
133
+ temp_dir = "temp"
134
+ resolution = 256
135
+ num_workers = 10 # How many processes per device
136
+
137
+ affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers)
preprocess/data_processing_pipeline.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ import os
17
+ from preprocess.affine_transform import affine_transform_multi_gpus
18
+ from preprocess.remove_broken_videos import remove_broken_videos_multiprocessing
19
+ from preprocess.detect_shot import detect_shot_multiprocessing
20
+ from preprocess.filter_high_resolution import filter_high_resolution_multiprocessing
21
+ from preprocess.resample_fps_hz import resample_fps_hz_multiprocessing
22
+ from preprocess.segment_videos import segment_videos_multiprocessing
23
+ from preprocess.sync_av import sync_av_multi_gpus
24
+ from preprocess.filter_visual_quality import filter_visual_quality_multi_gpus
25
+ from preprocess.remove_incorrect_affined import remove_incorrect_affined_multiprocessing
26
+
27
+
28
+ def data_processing_pipeline(
29
+ total_num_workers, per_gpu_num_workers, resolution, sync_conf_threshold, temp_dir, input_dir
30
+ ):
31
+ print("Removing broken videos...")
32
+ remove_broken_videos_multiprocessing(input_dir, total_num_workers)
33
+
34
+ print("Resampling FPS hz...")
35
+ resampled_dir = os.path.join(os.path.dirname(input_dir), "resampled")
36
+ resample_fps_hz_multiprocessing(input_dir, resampled_dir, total_num_workers)
37
+
38
+ print("Detecting shot...")
39
+ shot_dir = os.path.join(os.path.dirname(input_dir), "shot")
40
+ detect_shot_multiprocessing(resampled_dir, shot_dir, total_num_workers)
41
+
42
+ print("Segmenting videos...")
43
+ segmented_dir = os.path.join(os.path.dirname(input_dir), "segmented")
44
+ segment_videos_multiprocessing(shot_dir, segmented_dir, total_num_workers)
45
+
46
+ print("Filtering high resolution...")
47
+ high_resolution_dir = os.path.join(os.path.dirname(input_dir), "high_resolution")
48
+ filter_high_resolution_multiprocessing(segmented_dir, high_resolution_dir, resolution, total_num_workers)
49
+
50
+ print("Affine transforming videos...")
51
+ affine_transformed_dir = os.path.join(os.path.dirname(input_dir), "affine_transformed")
52
+ affine_transform_multi_gpus(
53
+ high_resolution_dir, affine_transformed_dir, temp_dir, resolution, per_gpu_num_workers // 2
54
+ )
55
+
56
+ print("Removing incorrect affined videos...")
57
+ remove_incorrect_affined_multiprocessing(affine_transformed_dir, total_num_workers)
58
+
59
+ print("Syncing audio and video...")
60
+ av_synced_dir = os.path.join(os.path.dirname(input_dir), f"av_synced_{sync_conf_threshold}")
61
+ sync_av_multi_gpus(affine_transformed_dir, av_synced_dir, temp_dir, per_gpu_num_workers, sync_conf_threshold)
62
+
63
+ print("Filtering visual quality...")
64
+ high_visual_quality_dir = os.path.join(os.path.dirname(input_dir), "high_visual_quality")
65
+ filter_visual_quality_multi_gpus(av_synced_dir, high_visual_quality_dir, per_gpu_num_workers)
66
+
67
+
68
+ if __name__ == "__main__":
69
+ parser = argparse.ArgumentParser()
70
+ parser.add_argument("--total_num_workers", type=int, default=100)
71
+ parser.add_argument("--per_gpu_num_workers", type=int, default=20)
72
+ parser.add_argument("--resolution", type=int, default=256)
73
+ parser.add_argument("--sync_conf_threshold", type=int, default=3)
74
+ parser.add_argument("--temp_dir", type=str, default="temp")
75
+ parser.add_argument("--input_dir", type=str, required=True)
76
+ args = parser.parse_args()
77
+
78
+ data_processing_pipeline(
79
+ args.total_num_workers,
80
+ args.per_gpu_num_workers,
81
+ args.resolution,
82
+ args.sync_conf_threshold,
83
+ args.temp_dir,
84
+ args.input_dir,
85
+ )
preprocess/detect_shot.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ import tqdm
18
+ from multiprocessing import Pool
19
+
20
+ paths = []
21
+
22
+
23
+ def gather_paths(input_dir, output_dir):
24
+ for video in sorted(os.listdir(input_dir)):
25
+ if video.endswith(".mp4"):
26
+ video_input = os.path.join(input_dir, video)
27
+ video_output = os.path.join(output_dir, video)
28
+ if os.path.isfile(video_output):
29
+ continue
30
+ paths.append([video_input, output_dir])
31
+ elif os.path.isdir(os.path.join(input_dir, video)):
32
+ gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
33
+
34
+
35
+ def detect_shot(video_input, output_dir):
36
+ os.makedirs(output_dir, exist_ok=True)
37
+ video = os.path.basename(video_input)[:-4]
38
+ command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
39
+ # command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --high-quality --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
40
+ subprocess.run(command, shell=True)
41
+
42
+
43
+ def multi_run_wrapper(args):
44
+ return detect_shot(*args)
45
+
46
+
47
+ def detect_shot_multiprocessing(input_dir, output_dir, num_workers):
48
+ print(f"Recursively gathering video paths of {input_dir} ...")
49
+ gather_paths(input_dir, output_dir)
50
+
51
+ print(f"Detecting shot of {input_dir} ...")
52
+ with Pool(num_workers) as pool:
53
+ for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
54
+ pass
55
+
56
+
57
+ if __name__ == "__main__":
58
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/high-resolution"
59
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/shot"
60
+ num_workers = 50
61
+
62
+ detect_shot_multiprocessing(input_dir, output_dir, num_workers)
preprocess/filter_high_resolution.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import mediapipe as mp
16
+ from latentsync.utils.util import read_video
17
+ import os
18
+ import tqdm
19
+ import shutil
20
+ from multiprocessing import Pool
21
+
22
+ paths = []
23
+
24
+
25
+ def gather_video_paths(input_dir, output_dir, resolution):
26
+ for video in sorted(os.listdir(input_dir)):
27
+ if video.endswith(".mp4"):
28
+ video_input = os.path.join(input_dir, video)
29
+ video_output = os.path.join(output_dir, video)
30
+ if os.path.isfile(video_output):
31
+ continue
32
+ paths.append([video_input, video_output, resolution])
33
+ elif os.path.isdir(os.path.join(input_dir, video)):
34
+ gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video), resolution)
35
+
36
+
37
+ class FaceDetector:
38
+ def __init__(self, resolution=256):
39
+ self.face_detection = mp.solutions.face_detection.FaceDetection(
40
+ model_selection=0, min_detection_confidence=0.5
41
+ )
42
+ self.resolution = resolution
43
+
44
+ def detect_face(self, image):
45
+ height, width = image.shape[:2]
46
+ # Process the image and detect faces.
47
+ results = self.face_detection.process(image)
48
+
49
+ if not results.detections: # Face not detected
50
+ raise Exception("Face not detected")
51
+
52
+ if len(results.detections) != 1:
53
+ return False
54
+ detection = results.detections[0] # Only use the first face in the image
55
+
56
+ bounding_box = detection.location_data.relative_bounding_box
57
+ face_width = int(bounding_box.width * width)
58
+ face_height = int(bounding_box.height * height)
59
+ if face_width < self.resolution or face_height < self.resolution:
60
+ return False
61
+ return True
62
+
63
+ def detect_video(self, video_path):
64
+ video_frames = read_video(video_path, change_fps=False)
65
+ if len(video_frames) == 0:
66
+ return False
67
+ for frame in video_frames:
68
+ if not self.detect_face(frame):
69
+ return False
70
+ return True
71
+
72
+ def close(self):
73
+ self.face_detection.close()
74
+
75
+
76
+ def filter_video(video_input, video_out, resolution):
77
+ if os.path.isfile(video_out):
78
+ return
79
+ face_detector = FaceDetector(resolution)
80
+ try:
81
+ save = face_detector.detect_video(video_input)
82
+ except Exception as e:
83
+ # print(f"Exception: {e} Input video: {video_input}")
84
+ face_detector.close()
85
+ return
86
+ if save:
87
+ os.makedirs(os.path.dirname(video_out), exist_ok=True)
88
+ shutil.copy(video_input, video_out)
89
+ face_detector.close()
90
+
91
+
92
+ def multi_run_wrapper(args):
93
+ return filter_video(*args)
94
+
95
+
96
+ def filter_high_resolution_multiprocessing(input_dir, output_dir, resolution, num_workers):
97
+ print(f"Recursively gathering video paths of {input_dir} ...")
98
+ gather_video_paths(input_dir, output_dir, resolution)
99
+
100
+ print(f"Filtering high resolution videos in {input_dir} ...")
101
+ with Pool(num_workers) as pool:
102
+ for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
103
+ pass
104
+
105
+
106
+ if __name__ == "__main__":
107
+ input_dir = "/mnt/bn/maliva-gen-ai/lichunyu/HDTF/original/train"
108
+ output_dir = "/mnt/bn/maliva-gen-ai/lichunyu/HDTF/detected/train"
109
+ resolution = 256
110
+ num_workers = 50
111
+
112
+ filter_high_resolution_multiprocessing(input_dir, output_dir, resolution, num_workers)
preprocess/filter_visual_quality.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import tqdm
17
+ import torch
18
+ import torchvision
19
+ import shutil
20
+ from multiprocessing import Process
21
+ import numpy as np
22
+ from decord import VideoReader
23
+ from einops import rearrange
24
+ from eval.hyper_iqa import HyperNet, TargetNet
25
+
26
+
27
+ paths = []
28
+
29
+
30
+ def gather_paths(input_dir, output_dir):
31
+ # os.makedirs(output_dir, exist_ok=True)
32
+
33
+ for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
34
+ if video.endswith(".mp4"):
35
+ video_input = os.path.join(input_dir, video)
36
+ video_output = os.path.join(output_dir, video)
37
+ if os.path.isfile(video_output):
38
+ continue
39
+ paths.append((video_input, video_output))
40
+ elif os.path.isdir(os.path.join(input_dir, video)):
41
+ gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
42
+
43
+
44
+ def read_video(video_path: str):
45
+ vr = VideoReader(video_path)
46
+ first_frame = vr[0].asnumpy()
47
+ middle_frame = vr[len(vr) // 2].asnumpy()
48
+ last_frame = vr[-1].asnumpy()
49
+ vr.seek(0)
50
+ video_frames = np.stack([first_frame, middle_frame, last_frame], axis=0)
51
+ video_frames = torch.from_numpy(rearrange(video_frames, "b h w c -> b c h w"))
52
+ video_frames = video_frames / 255.0
53
+ return video_frames
54
+
55
+
56
+ def func(paths, device_id):
57
+ device = f"cuda:{device_id}"
58
+
59
+ model_hyper = HyperNet(16, 112, 224, 112, 56, 28, 14, 7).to(device)
60
+ model_hyper.train(False)
61
+
62
+ # load the pre-trained model on the koniq-10k dataset
63
+ model_hyper.load_state_dict((torch.load("checkpoints/auxiliary/koniq_pretrained.pkl", map_location=device)))
64
+
65
+ transforms = torchvision.transforms.Compose(
66
+ [
67
+ torchvision.transforms.CenterCrop(size=224),
68
+ torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
69
+ ]
70
+ )
71
+
72
+ for video_input, video_output in paths:
73
+ try:
74
+ video_frames = read_video(video_input)
75
+ video_frames = transforms(video_frames)
76
+ video_frames = video_frames.clone().detach().to(device)
77
+ paras = model_hyper(video_frames) # 'paras' contains the network weights conveyed to target network
78
+
79
+ # Building target network
80
+ model_target = TargetNet(paras).to(device)
81
+ for param in model_target.parameters():
82
+ param.requires_grad = False
83
+
84
+ # Quality prediction
85
+ pred = model_target(paras["target_in_vec"]) # 'paras['target_in_vec']' is the input to target net
86
+
87
+ # quality score ranges from 0-100, a higher score indicates a better quality
88
+ quality_score = pred.mean().item()
89
+ print(f"Input video: {video_input}\nVisual quality score: {quality_score:.2f}")
90
+
91
+ if quality_score >= 40:
92
+ os.makedirs(os.path.dirname(video_output), exist_ok=True)
93
+ shutil.copy(video_input, video_output)
94
+ except Exception as e:
95
+ print(e)
96
+
97
+
98
+ def split(a, n):
99
+ k, m = divmod(len(a), n)
100
+ return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
101
+
102
+
103
+ def filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers):
104
+ gather_paths(input_dir, output_dir)
105
+ num_devices = torch.cuda.device_count()
106
+ if num_devices == 0:
107
+ raise RuntimeError("No GPUs found")
108
+ split_paths = list(split(paths, num_workers * num_devices))
109
+ processes = []
110
+
111
+ for i in range(num_devices):
112
+ for j in range(num_workers):
113
+ process_index = i * num_workers + j
114
+ process = Process(target=func, args=(split_paths[process_index], i))
115
+ process.start()
116
+ processes.append(process)
117
+
118
+ for process in processes:
119
+ process.join()
120
+
121
+
122
+ if __name__ == "__main__":
123
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/av_synced_high"
124
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality"
125
+ num_workers = 20 # How many processes per device
126
+
127
+ filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers)
preprocess/remove_broken_videos.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ from multiprocessing import Pool
17
+ import tqdm
18
+
19
+ from latentsync.utils.av_reader import AVReader
20
+ from latentsync.utils.util import gather_video_paths_recursively
21
+
22
+
23
+ def remove_broken_video(video_path):
24
+ try:
25
+ AVReader(video_path)
26
+ except Exception:
27
+ os.remove(video_path)
28
+
29
+
30
+ def remove_broken_videos_multiprocessing(input_dir, num_workers):
31
+ video_paths = gather_video_paths_recursively(input_dir)
32
+
33
+ print("Removing broken videos...")
34
+ with Pool(num_workers) as pool:
35
+ for _ in tqdm.tqdm(pool.imap_unordered(remove_broken_video, video_paths), total=len(video_paths)):
36
+ pass
37
+
38
+
39
+ if __name__ == "__main__":
40
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual/affine_transformed"
41
+ num_workers = 50
42
+
43
+ remove_broken_videos_multiprocessing(input_dir, num_workers)
preprocess/remove_incorrect_affined.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import mediapipe as mp
16
+ from latentsync.utils.util import read_video, gather_video_paths_recursively
17
+ import os
18
+ import tqdm
19
+ from multiprocessing import Pool
20
+
21
+
22
+ class FaceDetector:
23
+ def __init__(self):
24
+ self.face_detection = mp.solutions.face_detection.FaceDetection(
25
+ model_selection=0, min_detection_confidence=0.5
26
+ )
27
+
28
+ def detect_face(self, image):
29
+ # Process the image and detect faces.
30
+ results = self.face_detection.process(image)
31
+
32
+ if not results.detections: # Face not detected
33
+ return False
34
+
35
+ if len(results.detections) != 1:
36
+ return False
37
+ return True
38
+
39
+ def detect_video(self, video_path):
40
+ try:
41
+ video_frames = read_video(video_path, change_fps=False)
42
+ except Exception as e:
43
+ print(f"Exception: {e} - {video_path}")
44
+ return False
45
+ if len(video_frames) == 0:
46
+ return False
47
+ for frame in video_frames:
48
+ if not self.detect_face(frame):
49
+ return False
50
+ return True
51
+
52
+ def close(self):
53
+ self.face_detection.close()
54
+
55
+
56
+ def remove_incorrect_affined(video_path):
57
+ if not os.path.isfile(video_path):
58
+ return
59
+ face_detector = FaceDetector()
60
+ has_face = face_detector.detect_video(video_path)
61
+ if not has_face:
62
+ os.remove(video_path)
63
+ print(f"Removed: {video_path}")
64
+ face_detector.close()
65
+
66
+
67
+ def remove_incorrect_affined_multiprocessing(input_dir, num_workers):
68
+ video_paths = gather_video_paths_recursively(input_dir)
69
+ print(f"Total videos: {len(video_paths)}")
70
+
71
+ print(f"Removing incorrect affined videos in {input_dir} ...")
72
+ with Pool(num_workers) as pool:
73
+ for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)):
74
+ pass
75
+
76
+
77
+ if __name__ == "__main__":
78
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality"
79
+ num_workers = 50
80
+
81
+ remove_incorrect_affined_multiprocessing(input_dir, num_workers)
preprocess/resample_fps_hz.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ import tqdm
18
+ from multiprocessing import Pool
19
+ import cv2
20
+
21
+ paths = []
22
+
23
+
24
+ def gather_paths(input_dir, output_dir):
25
+ for video in sorted(os.listdir(input_dir)):
26
+ if video.endswith(".mp4"):
27
+ video_input = os.path.join(input_dir, video)
28
+ video_output = os.path.join(output_dir, video)
29
+ if os.path.isfile(video_output):
30
+ continue
31
+ paths.append([video_input, video_output])
32
+ elif os.path.isdir(os.path.join(input_dir, video)):
33
+ gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
34
+
35
+
36
+ def get_video_fps(video_path: str):
37
+ cam = cv2.VideoCapture(video_path)
38
+ fps = cam.get(cv2.CAP_PROP_FPS)
39
+ return fps
40
+
41
+
42
+ def resample_fps_hz(video_input, video_output):
43
+ os.makedirs(os.path.dirname(video_output), exist_ok=True)
44
+ if get_video_fps(video_input) == 25:
45
+ command = f"ffmpeg -loglevel error -y -i {video_input} -c:v copy -ar 16000 -q:a 0 {video_output}"
46
+ else:
47
+ command = f"ffmpeg -loglevel error -y -i {video_input} -r 25 -ar 16000 -q:a 0 {video_output}"
48
+ subprocess.run(command, shell=True)
49
+
50
+
51
+ def multi_run_wrapper(args):
52
+ return resample_fps_hz(*args)
53
+
54
+
55
+ def resample_fps_hz_multiprocessing(input_dir, output_dir, num_workers):
56
+ print(f"Recursively gathering video paths of {input_dir} ...")
57
+ gather_paths(input_dir, output_dir)
58
+
59
+ print(f"Resampling FPS and Hz of {input_dir} ...")
60
+ with Pool(num_workers) as pool:
61
+ for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
62
+ pass
63
+
64
+
65
+ if __name__ == "__main__":
66
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/train"
67
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/resampled_test"
68
+ num_workers = 20
69
+
70
+ resample_fps_hz_multiprocessing(input_dir, output_dir, num_workers)
preprocess/segment_videos.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ import tqdm
18
+ from multiprocessing import Pool
19
+
20
+ paths = []
21
+
22
+
23
+ def gather_paths(input_dir, output_dir):
24
+ for video in sorted(os.listdir(input_dir)):
25
+ if video.endswith(".mp4"):
26
+ video_basename = video[:-4]
27
+ video_input = os.path.join(input_dir, video)
28
+ video_output = os.path.join(output_dir, f"{video_basename}_%03d.mp4")
29
+ if os.path.isfile(video_output):
30
+ continue
31
+ paths.append([video_input, video_output])
32
+ elif os.path.isdir(os.path.join(input_dir, video)):
33
+ gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
34
+
35
+
36
+ def segment_video(video_input, video_output):
37
+ os.makedirs(os.path.dirname(video_output), exist_ok=True)
38
+ command = f"ffmpeg -loglevel error -y -i {video_input} -map 0 -c:v copy -segment_time 5 -f segment -reset_timestamps 1 -q:a 0 {video_output}"
39
+ # command = f'ffmpeg -loglevel error -y -i {video_input} -map 0 -segment_time 5 -f segment -reset_timestamps 1 -force_key_frames "expr:gte(t,n_forced*5)" -crf 18 -q:a 0 {video_output}'
40
+ subprocess.run(command, shell=True)
41
+
42
+
43
+ def multi_run_wrapper(args):
44
+ return segment_video(*args)
45
+
46
+
47
+ def segment_videos_multiprocessing(input_dir, output_dir, num_workers):
48
+ print(f"Recursively gathering video paths of {input_dir} ...")
49
+ gather_paths(input_dir, output_dir)
50
+
51
+ print(f"Segmenting videos of {input_dir} ...")
52
+ with Pool(num_workers) as pool:
53
+ for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
54
+ pass
55
+
56
+
57
+ if __name__ == "__main__":
58
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars_new/cut"
59
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars_new/segmented"
60
+ num_workers = 50
61
+
62
+ segment_videos_multiprocessing(input_dir, output_dir, num_workers)
preprocess/sync_av.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import tqdm
17
+ from eval.syncnet import SyncNetEval
18
+ from eval.syncnet_detect import SyncNetDetector
19
+ from eval.eval_sync_conf import syncnet_eval
20
+ import torch
21
+ import subprocess
22
+ import shutil
23
+ from multiprocessing import Process
24
+
25
+ paths = []
26
+
27
+
28
+ def gather_paths(input_dir, output_dir):
29
+ # os.makedirs(output_dir, exist_ok=True)
30
+
31
+ for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
32
+ if video.endswith(".mp4"):
33
+ video_input = os.path.join(input_dir, video)
34
+ video_output = os.path.join(output_dir, video)
35
+ if os.path.isfile(video_output):
36
+ continue
37
+ paths.append((video_input, video_output))
38
+ elif os.path.isdir(os.path.join(input_dir, video)):
39
+ gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
40
+
41
+
42
+ def adjust_offset(video_input: str, video_output: str, av_offset: int, fps: int = 25):
43
+ command = f"ffmpeg -loglevel error -y -i {video_input} -itsoffset {av_offset/fps} -i {video_input} -map 0:v -map 1:a -c copy -q:v 0 -q:a 0 {video_output}"
44
+ subprocess.run(command, shell=True)
45
+
46
+
47
+ def func(sync_conf_threshold, paths, device_id, process_temp_dir):
48
+ os.makedirs(process_temp_dir, exist_ok=True)
49
+ device = f"cuda:{device_id}"
50
+
51
+ syncnet = SyncNetEval(device=device)
52
+ syncnet.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
53
+
54
+ detect_results_dir = os.path.join(process_temp_dir, "detect_results")
55
+ syncnet_eval_results_dir = os.path.join(process_temp_dir, "syncnet_eval_results")
56
+
57
+ syncnet_detector = SyncNetDetector(device=device, detect_results_dir=detect_results_dir)
58
+
59
+ for video_input, video_output in paths:
60
+ try:
61
+ av_offset, conf = syncnet_eval(
62
+ syncnet, syncnet_detector, video_input, syncnet_eval_results_dir, detect_results_dir
63
+ )
64
+ if conf >= sync_conf_threshold and abs(av_offset) <= 6:
65
+ os.makedirs(os.path.dirname(video_output), exist_ok=True)
66
+ if av_offset == 0:
67
+ shutil.copy(video_input, video_output)
68
+ else:
69
+ adjust_offset(video_input, video_output, av_offset)
70
+ except Exception as e:
71
+ print(e)
72
+
73
+
74
+ def split(a, n):
75
+ k, m = divmod(len(a), n)
76
+ return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
77
+
78
+
79
+ def sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold):
80
+ gather_paths(input_dir, output_dir)
81
+ num_devices = torch.cuda.device_count()
82
+ if num_devices == 0:
83
+ raise RuntimeError("No GPUs found")
84
+ split_paths = list(split(paths, num_workers * num_devices))
85
+ processes = []
86
+
87
+ for i in range(num_devices):
88
+ for j in range(num_workers):
89
+ process_index = i * num_workers + j
90
+ process = Process(
91
+ target=func,
92
+ args=(
93
+ sync_conf_threshold,
94
+ split_paths[process_index],
95
+ i,
96
+ os.path.join(temp_dir, f"process_{process_index}"),
97
+ ),
98
+ )
99
+ process.start()
100
+ processes.append(process)
101
+
102
+ for process in processes:
103
+ process.join()
104
+
105
+
106
+ if __name__ == "__main__":
107
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/affine_transformed"
108
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/temp"
109
+ temp_dir = "temp"
110
+ num_workers = 20 # How many processes per device
111
+ sync_conf_threshold = 3
112
+
113
+ sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold)
requirements.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.2.2
2
+ torchvision==0.17.2
3
+ --extra-index-url https://download.pytorch.org/whl/cu121
4
+ xformers==0.0.26
5
+ triton==2.2.0
6
+
7
+ diffusers==0.11.1
8
+ transformers==4.38.0
9
+ huggingface-hub==0.25.2
10
+ imageio==2.27.0
11
+ decord==0.6.0
12
+ accelerate==0.26.1
13
+ einops==0.7.0
14
+ omegaconf==2.3.0
15
+ safetensors==0.4.2
16
+ opencv-python==4.9.0.80
17
+ mediapipe==0.10.11
18
+ av==11.0.0
19
+ torch-fidelity==0.3.0
20
+ torchmetrics==1.3.1
21
+ python_speech_features==0.6
22
+ librosa==0.10.1
23
+ scenedetect==0.6.1
24
+ ffmpeg-python==0.2.0
25
+ lpips==0.1.4
26
+ face-alignment==1.4.1
27
+ ninja==1.11.1.1
28
+ pandas==2.0.3
29
+ numpy==1.24.4
30
+ gradio==5.9.1
scripts/inference.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ from omegaconf import OmegaConf
17
+ import torch
18
+ from diffusers import AutoencoderKL, DDIMScheduler
19
+ from latentsync.models.unet import UNet3DConditionModel
20
+ from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
21
+ from diffusers.utils.import_utils import is_xformers_available
22
+ from accelerate.utils import set_seed
23
+ from latentsync.whisper.audio2feature import Audio2Feature
24
+
25
+
26
+ def main(config, args):
27
+ # Check if the GPU supports float16
28
+ is_fp16_supported = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 7
29
+ dtype = torch.float16 if is_fp16_supported else torch.float32
30
+
31
+ print(f"Input video path: {args.video_path}")
32
+ print(f"Input audio path: {args.audio_path}")
33
+ print(f"Loaded checkpoint path: {args.inference_ckpt_path}")
34
+
35
+ scheduler = DDIMScheduler.from_pretrained("configs")
36
+
37
+ if config.model.cross_attention_dim == 768:
38
+ whisper_model_path = "checkpoints/whisper/small.pt"
39
+ elif config.model.cross_attention_dim == 384:
40
+ whisper_model_path = "checkpoints/whisper/tiny.pt"
41
+ else:
42
+ raise NotImplementedError("cross_attention_dim must be 768 or 384")
43
+
44
+ audio_encoder = Audio2Feature(model_path=whisper_model_path, device="cuda", num_frames=config.data.num_frames)
45
+
46
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
47
+ vae.config.scaling_factor = 0.18215
48
+ vae.config.shift_factor = 0
49
+
50
+ unet, _ = UNet3DConditionModel.from_pretrained(
51
+ OmegaConf.to_container(config.model),
52
+ args.inference_ckpt_path, # load checkpoint
53
+ device="cpu",
54
+ )
55
+
56
+ unet = unet.to(dtype=dtype)
57
+
58
+ # set xformers
59
+ if is_xformers_available():
60
+ unet.enable_xformers_memory_efficient_attention()
61
+
62
+ pipeline = LipsyncPipeline(
63
+ vae=vae,
64
+ audio_encoder=audio_encoder,
65
+ unet=unet,
66
+ scheduler=scheduler,
67
+ ).to("cuda")
68
+
69
+ if args.seed != -1:
70
+ set_seed(args.seed)
71
+ else:
72
+ torch.seed()
73
+
74
+ print(f"Initial seed: {torch.initial_seed()}")
75
+
76
+ pipeline(
77
+ video_path=args.video_path,
78
+ audio_path=args.audio_path,
79
+ video_out_path=args.video_out_path,
80
+ video_mask_path=args.video_out_path.replace(".mp4", "_mask.mp4"),
81
+ num_frames=config.data.num_frames,
82
+ num_inference_steps=config.run.inference_steps,
83
+ guidance_scale=args.guidance_scale,
84
+ weight_dtype=dtype,
85
+ width=config.data.resolution,
86
+ height=config.data.resolution,
87
+ )
88
+
89
+
90
+ if __name__ == "__main__":
91
+ parser = argparse.ArgumentParser()
92
+ parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")
93
+ parser.add_argument("--inference_ckpt_path", type=str, required=True)
94
+ parser.add_argument("--video_path", type=str, required=True)
95
+ parser.add_argument("--audio_path", type=str, required=True)
96
+ parser.add_argument("--video_out_path", type=str, required=True)
97
+ parser.add_argument("--guidance_scale", type=float, default=1.0)
98
+ parser.add_argument("--seed", type=int, default=1247)
99
+ args = parser.parse_args()
100
+
101
+ config = OmegaConf.load(args.unet_config_path)
102
+
103
+ main(config, args)
scripts/train_syncnet.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from tqdm.auto import tqdm
16
+ import os, argparse, datetime, math
17
+ import logging
18
+ from omegaconf import OmegaConf
19
+ import shutil
20
+
21
+ from latentsync.data.syncnet_dataset import SyncNetDataset
22
+ from latentsync.models.syncnet import SyncNet
23
+ from latentsync.models.syncnet_wav2lip import SyncNetWav2Lip
24
+ from latentsync.utils.util import gather_loss, plot_loss_chart
25
+ from accelerate.utils import set_seed
26
+
27
+ import torch
28
+ from diffusers import AutoencoderKL
29
+ from diffusers.utils.logging import get_logger
30
+ from einops import rearrange
31
+ import torch.distributed as dist
32
+ from torch.nn.parallel import DistributedDataParallel as DDP
33
+ from torch.utils.data.distributed import DistributedSampler
34
+ from latentsync.utils.util import init_dist, cosine_loss
35
+
36
+ logger = get_logger(__name__)
37
+
38
+
39
+ def main(config):
40
+ # Initialize distributed training
41
+ local_rank = init_dist()
42
+ global_rank = dist.get_rank()
43
+ num_processes = dist.get_world_size()
44
+ is_main_process = global_rank == 0
45
+
46
+ seed = config.run.seed + global_rank
47
+ set_seed(seed)
48
+
49
+ # Logging folder
50
+ folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
51
+ output_dir = os.path.join(config.data.train_output_dir, folder_name)
52
+
53
+ # Make one log on every process with the configuration for debugging.
54
+ logging.basicConfig(
55
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
56
+ datefmt="%m/%d/%Y %H:%M:%S",
57
+ level=logging.INFO,
58
+ )
59
+
60
+ # Handle the output folder creation
61
+ if is_main_process:
62
+ os.makedirs(output_dir, exist_ok=True)
63
+ os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
64
+ os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
65
+ shutil.copy(config.config_path, output_dir)
66
+
67
+ device = torch.device(local_rank)
68
+
69
+ if config.data.latent_space:
70
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
71
+ vae.requires_grad_(False)
72
+ vae.to(device)
73
+ else:
74
+ vae = None
75
+
76
+ # Dataset and Dataloader setup
77
+ train_dataset = SyncNetDataset(config.data.train_data_dir, config.data.train_fileslist, config)
78
+ val_dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
79
+
80
+ train_distributed_sampler = DistributedSampler(
81
+ train_dataset,
82
+ num_replicas=num_processes,
83
+ rank=global_rank,
84
+ shuffle=True,
85
+ seed=config.run.seed,
86
+ )
87
+
88
+ # DataLoaders creation:
89
+ train_dataloader = torch.utils.data.DataLoader(
90
+ train_dataset,
91
+ batch_size=config.data.batch_size,
92
+ shuffle=False,
93
+ sampler=train_distributed_sampler,
94
+ num_workers=config.data.num_workers,
95
+ pin_memory=False,
96
+ drop_last=True,
97
+ worker_init_fn=train_dataset.worker_init_fn,
98
+ )
99
+
100
+ num_samples_limit = 640
101
+
102
+ val_batch_size = min(
103
+ num_samples_limit // config.data.num_frames, config.data.batch_size
104
+ ) # limit batch size to avoid CUDA OOM
105
+
106
+ val_dataloader = torch.utils.data.DataLoader(
107
+ val_dataset,
108
+ batch_size=val_batch_size,
109
+ shuffle=False,
110
+ num_workers=config.data.num_workers,
111
+ pin_memory=False,
112
+ drop_last=False,
113
+ worker_init_fn=val_dataset.worker_init_fn,
114
+ )
115
+
116
+ # Model
117
+ syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
118
+ # syncnet = SyncNetWav2Lip().to(device)
119
+
120
+ optimizer = torch.optim.AdamW(
121
+ list(filter(lambda p: p.requires_grad, syncnet.parameters())), lr=config.optimizer.lr
122
+ )
123
+
124
+ if config.ckpt.resume_ckpt_path != "":
125
+ if is_main_process:
126
+ logger.info(f"Load checkpoint from: {config.ckpt.resume_ckpt_path}")
127
+ ckpt = torch.load(config.ckpt.resume_ckpt_path, map_location=device)
128
+
129
+ syncnet.load_state_dict(ckpt["state_dict"])
130
+ global_step = ckpt["global_step"]
131
+ train_step_list = ckpt["train_step_list"]
132
+ train_loss_list = ckpt["train_loss_list"]
133
+ val_step_list = ckpt["val_step_list"]
134
+ val_loss_list = ckpt["val_loss_list"]
135
+ else:
136
+ global_step = 0
137
+ train_step_list = []
138
+ train_loss_list = []
139
+ val_step_list = []
140
+ val_loss_list = []
141
+
142
+ # DDP wrapper
143
+ syncnet = DDP(syncnet, device_ids=[local_rank], output_device=local_rank)
144
+
145
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader))
146
+ num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
147
+ # validation_steps = int(config.ckpt.save_ckpt_steps // 5)
148
+ # validation_steps = 100
149
+
150
+ if is_main_process:
151
+ logger.info("***** Running training *****")
152
+ logger.info(f" Num examples = {len(train_dataset)}")
153
+ logger.info(f" Num Epochs = {num_train_epochs}")
154
+ logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
155
+ logger.info(f" Total train batch size (w. parallel & distributed) = {config.data.batch_size * num_processes}")
156
+ logger.info(f" Total optimization steps = {config.run.max_train_steps}")
157
+
158
+ first_epoch = global_step // num_update_steps_per_epoch
159
+ num_val_batches = config.data.num_val_samples // (num_processes * config.data.batch_size)
160
+
161
+ # Only show the progress bar once on each machine.
162
+ progress_bar = tqdm(
163
+ range(0, config.run.max_train_steps), initial=global_step, desc="Steps", disable=not is_main_process
164
+ )
165
+
166
+ # Support mixed-precision training
167
+ scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
168
+
169
+ for epoch in range(first_epoch, num_train_epochs):
170
+ train_dataloader.sampler.set_epoch(epoch)
171
+ syncnet.train()
172
+
173
+ for step, batch in enumerate(train_dataloader):
174
+ ### >>>> Training >>>> ###
175
+
176
+ frames = batch["frames"].to(device, dtype=torch.float16)
177
+ audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
178
+ y = batch["y"].to(device, dtype=torch.float32)
179
+
180
+ if config.data.latent_space:
181
+ max_batch_size = (
182
+ num_samples_limit // config.data.num_frames
183
+ ) # due to the limited cuda memory, we split the input frames into parts
184
+ if frames.shape[0] > max_batch_size:
185
+ assert (
186
+ frames.shape[0] % max_batch_size == 0
187
+ ), f"max_batch_size {max_batch_size} should be divisible by batch_size {frames.shape[0]}"
188
+ frames_part_results = []
189
+ for i in range(0, frames.shape[0], max_batch_size):
190
+ frames_part = frames[i : i + max_batch_size]
191
+ frames_part = rearrange(frames_part, "b f c h w -> (b f) c h w")
192
+ with torch.no_grad():
193
+ frames_part = vae.encode(frames_part).latent_dist.sample() * 0.18215
194
+ frames_part_results.append(frames_part)
195
+ frames = torch.cat(frames_part_results, dim=0)
196
+ else:
197
+ frames = rearrange(frames, "b f c h w -> (b f) c h w")
198
+ with torch.no_grad():
199
+ frames = vae.encode(frames).latent_dist.sample() * 0.18215
200
+
201
+ frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
202
+ else:
203
+ frames = rearrange(frames, "b f c h w -> b (f c) h w")
204
+
205
+ if config.data.lower_half:
206
+ height = frames.shape[2]
207
+ frames = frames[:, :, height // 2 :, :]
208
+
209
+ # audio_embeds = wav2vec_encoder(audio_samples).last_hidden_state
210
+
211
+ # Mixed-precision training
212
+ with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
213
+ vision_embeds, audio_embeds = syncnet(frames, audio_samples)
214
+
215
+ loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
216
+
217
+ optimizer.zero_grad()
218
+
219
+ # Backpropagate
220
+ if config.run.mixed_precision_training:
221
+ scaler.scale(loss).backward()
222
+ """ >>> gradient clipping >>> """
223
+ scaler.unscale_(optimizer)
224
+ torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
225
+ """ <<< gradient clipping <<< """
226
+ scaler.step(optimizer)
227
+ scaler.update()
228
+ else:
229
+ loss.backward()
230
+ """ >>> gradient clipping >>> """
231
+ torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
232
+ """ <<< gradient clipping <<< """
233
+ optimizer.step()
234
+
235
+ progress_bar.update(1)
236
+ global_step += 1
237
+
238
+ global_average_loss = gather_loss(loss, device)
239
+ train_step_list.append(global_step)
240
+ train_loss_list.append(global_average_loss)
241
+
242
+ if is_main_process and global_step % config.run.validation_steps == 0:
243
+ logger.info(f"Validation at step {global_step}")
244
+ val_loss = validation(
245
+ val_dataloader,
246
+ device,
247
+ syncnet,
248
+ cosine_loss,
249
+ config.data.latent_space,
250
+ config.data.lower_half,
251
+ vae,
252
+ num_val_batches,
253
+ )
254
+ val_step_list.append(global_step)
255
+ val_loss_list.append(val_loss)
256
+ logger.info(f"Validation loss at step {global_step} is {val_loss:0.3f}")
257
+
258
+ if is_main_process and global_step % config.ckpt.save_ckpt_steps == 0:
259
+ checkpoint_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
260
+ torch.save(
261
+ {
262
+ "state_dict": syncnet.module.state_dict(), # to unwrap DDP
263
+ "global_step": global_step,
264
+ "train_step_list": train_step_list,
265
+ "train_loss_list": train_loss_list,
266
+ "val_step_list": val_step_list,
267
+ "val_loss_list": val_loss_list,
268
+ },
269
+ checkpoint_save_path,
270
+ )
271
+ logger.info(f"Saved checkpoint to {checkpoint_save_path}")
272
+ plot_loss_chart(
273
+ os.path.join(output_dir, f"loss_charts/loss_chart-{global_step}.png"),
274
+ ("Train loss", train_step_list, train_loss_list),
275
+ ("Val loss", val_step_list, val_loss_list),
276
+ )
277
+
278
+ progress_bar.set_postfix({"step_loss": global_average_loss})
279
+ if global_step >= config.run.max_train_steps:
280
+ break
281
+
282
+ progress_bar.close()
283
+ dist.destroy_process_group()
284
+
285
+
286
+ @torch.no_grad()
287
+ def validation(val_dataloader, device, syncnet, cosine_loss, latent_space, lower_half, vae, num_val_batches):
288
+ syncnet.eval()
289
+
290
+ losses = []
291
+ val_step = 0
292
+ while True:
293
+ for step, batch in enumerate(val_dataloader):
294
+ ### >>>> Validation >>>> ###
295
+
296
+ frames = batch["frames"].to(device, dtype=torch.float16)
297
+ audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
298
+ y = batch["y"].to(device, dtype=torch.float32)
299
+
300
+ if latent_space:
301
+ num_frames = frames.shape[1]
302
+ frames = rearrange(frames, "b f c h w -> (b f) c h w")
303
+ frames = vae.encode(frames).latent_dist.sample() * 0.18215
304
+ frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=num_frames)
305
+ else:
306
+ frames = rearrange(frames, "b f c h w -> b (f c) h w")
307
+
308
+ if lower_half:
309
+ height = frames.shape[2]
310
+ frames = frames[:, :, height // 2 :, :]
311
+
312
+ with torch.autocast(device_type="cuda", dtype=torch.float16):
313
+ vision_embeds, audio_embeds = syncnet(frames, audio_samples)
314
+
315
+ loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
316
+
317
+ losses.append(loss.item())
318
+
319
+ val_step += 1
320
+ if val_step > num_val_batches:
321
+ syncnet.train()
322
+ if len(losses) == 0:
323
+ raise RuntimeError("No validation data")
324
+ return sum(losses) / len(losses)
325
+
326
+
327
+ if __name__ == "__main__":
328
+ parser = argparse.ArgumentParser(description="Code to train the expert lip-sync discriminator")
329
+ parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_vae.yaml")
330
+ args = parser.parse_args()
331
+
332
+ # Load a configuration file
333
+ config = OmegaConf.load(args.config_path)
334
+ config.config_path = args.config_path
335
+
336
+ main(config)
scripts/train_unet.py ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import math
17
+ import argparse
18
+ import shutil
19
+ import datetime
20
+ import logging
21
+ from omegaconf import OmegaConf
22
+
23
+ from tqdm.auto import tqdm
24
+ from einops import rearrange
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.distributed as dist
29
+ from torch.utils.data.distributed import DistributedSampler
30
+ from torch.nn.parallel import DistributedDataParallel as DDP
31
+
32
+ import diffusers
33
+ from diffusers import AutoencoderKL, DDIMScheduler
34
+ from diffusers.utils.logging import get_logger
35
+ from diffusers.optimization import get_scheduler
36
+ from diffusers.utils.import_utils import is_xformers_available
37
+ from accelerate.utils import set_seed
38
+
39
+ from latentsync.data.unet_dataset import UNetDataset
40
+ from latentsync.models.unet import UNet3DConditionModel
41
+ from latentsync.models.syncnet import SyncNet
42
+ from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
43
+ from latentsync.utils.util import (
44
+ init_dist,
45
+ cosine_loss,
46
+ reversed_forward,
47
+ )
48
+ from latentsync.utils.util import plot_loss_chart, gather_loss
49
+ from latentsync.whisper.audio2feature import Audio2Feature
50
+ from latentsync.trepa import TREPALoss
51
+ from eval.syncnet import SyncNetEval
52
+ from eval.syncnet_detect import SyncNetDetector
53
+ from eval.eval_sync_conf import syncnet_eval
54
+ import lpips
55
+
56
+
57
+ logger = get_logger(__name__)
58
+
59
+
60
+ def main(config):
61
+ # Initialize distributed training
62
+ local_rank = init_dist()
63
+ global_rank = dist.get_rank()
64
+ num_processes = dist.get_world_size()
65
+ is_main_process = global_rank == 0
66
+
67
+ seed = config.run.seed + global_rank
68
+ set_seed(seed)
69
+
70
+ # Logging folder
71
+ folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
72
+ output_dir = os.path.join(config.data.train_output_dir, folder_name)
73
+
74
+ # Make one log on every process with the configuration for debugging.
75
+ logging.basicConfig(
76
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
77
+ datefmt="%m/%d/%Y %H:%M:%S",
78
+ level=logging.INFO,
79
+ )
80
+
81
+ # Handle the output folder creation
82
+ if is_main_process:
83
+ diffusers.utils.logging.set_verbosity_info()
84
+ os.makedirs(output_dir, exist_ok=True)
85
+ os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
86
+ os.makedirs(f"{output_dir}/val_videos", exist_ok=True)
87
+ os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
88
+ shutil.copy(config.unet_config_path, output_dir)
89
+ shutil.copy(config.data.syncnet_config_path, output_dir)
90
+
91
+ device = torch.device(local_rank)
92
+
93
+ noise_scheduler = DDIMScheduler.from_pretrained("configs")
94
+
95
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
96
+ vae.config.scaling_factor = 0.18215
97
+ vae.config.shift_factor = 0
98
+ vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
99
+ vae.requires_grad_(False)
100
+ vae.to(device)
101
+
102
+ syncnet_eval_model = SyncNetEval(device=device)
103
+ syncnet_eval_model.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
104
+
105
+ syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
106
+
107
+ if config.model.cross_attention_dim == 768:
108
+ whisper_model_path = "checkpoints/whisper/small.pt"
109
+ elif config.model.cross_attention_dim == 384:
110
+ whisper_model_path = "checkpoints/whisper/tiny.pt"
111
+ else:
112
+ raise NotImplementedError("cross_attention_dim must be 768 or 384")
113
+
114
+ audio_encoder = Audio2Feature(
115
+ model_path=whisper_model_path,
116
+ device=device,
117
+ audio_embeds_cache_dir=config.data.audio_embeds_cache_dir,
118
+ num_frames=config.data.num_frames,
119
+ )
120
+
121
+ unet, resume_global_step = UNet3DConditionModel.from_pretrained(
122
+ OmegaConf.to_container(config.model),
123
+ config.ckpt.resume_ckpt_path, # load checkpoint
124
+ device=device,
125
+ )
126
+
127
+ if config.model.add_audio_layer and config.run.use_syncnet:
128
+ syncnet_config = OmegaConf.load(config.data.syncnet_config_path)
129
+ if syncnet_config.ckpt.inference_ckpt_path == "":
130
+ raise ValueError("SyncNet path is not provided")
131
+ syncnet = SyncNet(OmegaConf.to_container(syncnet_config.model)).to(device=device, dtype=torch.float16)
132
+ syncnet_checkpoint = torch.load(syncnet_config.ckpt.inference_ckpt_path, map_location=device)
133
+ syncnet.load_state_dict(syncnet_checkpoint["state_dict"])
134
+ syncnet.requires_grad_(False)
135
+
136
+ unet.requires_grad_(True)
137
+ trainable_params = list(unet.parameters())
138
+
139
+ if config.optimizer.scale_lr:
140
+ config.optimizer.lr = config.optimizer.lr * num_processes
141
+
142
+ optimizer = torch.optim.AdamW(trainable_params, lr=config.optimizer.lr)
143
+
144
+ if is_main_process:
145
+ logger.info(f"trainable params number: {len(trainable_params)}")
146
+ logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
147
+
148
+ # Enable xformers
149
+ if config.run.enable_xformers_memory_efficient_attention:
150
+ if is_xformers_available():
151
+ unet.enable_xformers_memory_efficient_attention()
152
+ else:
153
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
154
+
155
+ # Enable gradient checkpointing
156
+ if config.run.enable_gradient_checkpointing:
157
+ unet.enable_gradient_checkpointing()
158
+
159
+ # Get the training dataset
160
+ train_dataset = UNetDataset(config.data.train_data_dir, config)
161
+ distributed_sampler = DistributedSampler(
162
+ train_dataset,
163
+ num_replicas=num_processes,
164
+ rank=global_rank,
165
+ shuffle=True,
166
+ seed=config.run.seed,
167
+ )
168
+
169
+ # DataLoaders creation:
170
+ train_dataloader = torch.utils.data.DataLoader(
171
+ train_dataset,
172
+ batch_size=config.data.batch_size,
173
+ shuffle=False,
174
+ sampler=distributed_sampler,
175
+ num_workers=config.data.num_workers,
176
+ pin_memory=False,
177
+ drop_last=True,
178
+ worker_init_fn=train_dataset.worker_init_fn,
179
+ )
180
+
181
+ # Get the training iteration
182
+ if config.run.max_train_steps == -1:
183
+ assert config.run.max_train_epochs != -1
184
+ config.run.max_train_steps = config.run.max_train_epochs * len(train_dataloader)
185
+
186
+ # Scheduler
187
+ lr_scheduler = get_scheduler(
188
+ config.optimizer.lr_scheduler,
189
+ optimizer=optimizer,
190
+ num_warmup_steps=config.optimizer.lr_warmup_steps,
191
+ num_training_steps=config.run.max_train_steps,
192
+ )
193
+
194
+ if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
195
+ lpips_loss_func = lpips.LPIPS(net="vgg").to(device)
196
+
197
+ if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
198
+ trepa_loss_func = TREPALoss(device=device)
199
+
200
+ # Validation pipeline
201
+ pipeline = LipsyncPipeline(
202
+ vae=vae,
203
+ audio_encoder=audio_encoder,
204
+ unet=unet,
205
+ scheduler=noise_scheduler,
206
+ ).to(device)
207
+ pipeline.set_progress_bar_config(disable=True)
208
+
209
+ # DDP warpper
210
+ unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)
211
+
212
+ # We need to recalculate our total training steps as the size of the training dataloader may have changed.
213
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader))
214
+ # Afterwards we recalculate our number of training epochs
215
+ num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
216
+
217
+ # Train!
218
+ total_batch_size = config.data.batch_size * num_processes
219
+
220
+ if is_main_process:
221
+ logger.info("***** Running training *****")
222
+ logger.info(f" Num examples = {len(train_dataset)}")
223
+ logger.info(f" Num Epochs = {num_train_epochs}")
224
+ logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
225
+ logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
226
+ logger.info(f" Total optimization steps = {config.run.max_train_steps}")
227
+ global_step = resume_global_step
228
+ first_epoch = resume_global_step // num_update_steps_per_epoch
229
+
230
+ # Only show the progress bar once on each machine.
231
+ progress_bar = tqdm(
232
+ range(0, config.run.max_train_steps),
233
+ initial=resume_global_step,
234
+ desc="Steps",
235
+ disable=not is_main_process,
236
+ )
237
+
238
+ train_step_list = []
239
+ sync_loss_list = []
240
+ recon_loss_list = []
241
+
242
+ val_step_list = []
243
+ sync_conf_list = []
244
+
245
+ # Support mixed-precision training
246
+ scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
247
+
248
+ for epoch in range(first_epoch, num_train_epochs):
249
+ train_dataloader.sampler.set_epoch(epoch)
250
+ unet.train()
251
+
252
+ for step, batch in enumerate(train_dataloader):
253
+ ### >>>> Training >>>> ###
254
+
255
+ if config.model.add_audio_layer:
256
+ if batch["mel"] != []:
257
+ mel = batch["mel"].to(device, dtype=torch.float16)
258
+
259
+ audio_embeds_list = []
260
+ try:
261
+ for idx in range(len(batch["video_path"])):
262
+ video_path = batch["video_path"][idx]
263
+ start_idx = batch["start_idx"][idx]
264
+
265
+ with torch.no_grad():
266
+ audio_feat = audio_encoder.audio2feat(video_path)
267
+ audio_embeds = audio_encoder.crop_overlap_audio_window(audio_feat, start_idx)
268
+ audio_embeds_list.append(audio_embeds)
269
+ except Exception as e:
270
+ logger.info(f"{type(e).__name__} - {e} - {video_path}")
271
+ continue
272
+ audio_embeds = torch.stack(audio_embeds_list) # (B, 16, 50, 384)
273
+ audio_embeds = audio_embeds.to(device, dtype=torch.float16)
274
+ else:
275
+ audio_embeds = None
276
+
277
+ # Convert videos to latent space
278
+ gt_images = batch["gt"].to(device, dtype=torch.float16)
279
+ gt_masked_images = batch["masked_gt"].to(device, dtype=torch.float16)
280
+ mask = batch["mask"].to(device, dtype=torch.float16)
281
+ ref_images = batch["ref"].to(device, dtype=torch.float16)
282
+
283
+ gt_images = rearrange(gt_images, "b f c h w -> (b f) c h w")
284
+ gt_masked_images = rearrange(gt_masked_images, "b f c h w -> (b f) c h w")
285
+ mask = rearrange(mask, "b f c h w -> (b f) c h w")
286
+ ref_images = rearrange(ref_images, "b f c h w -> (b f) c h w")
287
+
288
+ with torch.no_grad():
289
+ gt_latents = vae.encode(gt_images).latent_dist.sample()
290
+ gt_masked_images = vae.encode(gt_masked_images).latent_dist.sample()
291
+ ref_images = vae.encode(ref_images).latent_dist.sample()
292
+
293
+ mask = torch.nn.functional.interpolate(mask, size=config.data.resolution // vae_scale_factor)
294
+
295
+ gt_latents = (
296
+ rearrange(gt_latents, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
297
+ ) * vae.config.scaling_factor
298
+ gt_masked_images = (
299
+ rearrange(gt_masked_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
300
+ - vae.config.shift_factor
301
+ ) * vae.config.scaling_factor
302
+ ref_images = (
303
+ rearrange(ref_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
304
+ ) * vae.config.scaling_factor
305
+ mask = rearrange(mask, "(b f) c h w -> b c f h w", f=config.data.num_frames)
306
+
307
+ # Sample noise that we'll add to the latents
308
+ if config.run.use_mixed_noise:
309
+ # Refer to the paper: https://arxiv.org/abs/2305.10474
310
+ noise_shared_std_dev = (config.run.mixed_noise_alpha**2 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
311
+ noise_shared = torch.randn_like(gt_latents) * noise_shared_std_dev
312
+ noise_shared = noise_shared[:, :, 0:1].repeat(1, 1, config.data.num_frames, 1, 1)
313
+
314
+ noise_ind_std_dev = (1 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
315
+ noise_ind = torch.randn_like(gt_latents) * noise_ind_std_dev
316
+ noise = noise_ind + noise_shared
317
+ else:
318
+ noise = torch.randn_like(gt_latents)
319
+ noise = noise[:, :, 0:1].repeat(
320
+ 1, 1, config.data.num_frames, 1, 1
321
+ ) # Using the same noise for all frames, refer to the paper: https://arxiv.org/abs/2308.09716
322
+
323
+ bsz = gt_latents.shape[0]
324
+
325
+ # Sample a random timestep for each video
326
+ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device)
327
+ timesteps = timesteps.long()
328
+
329
+ # Add noise to the latents according to the noise magnitude at each timestep
330
+ # (this is the forward diffusion process)
331
+ noisy_tensor = noise_scheduler.add_noise(gt_latents, noise, timesteps)
332
+
333
+ # Get the target for loss depending on the prediction type
334
+ if noise_scheduler.config.prediction_type == "epsilon":
335
+ target = noise
336
+ elif noise_scheduler.config.prediction_type == "v_prediction":
337
+ raise NotImplementedError
338
+ else:
339
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
340
+
341
+ unet_input = torch.cat([noisy_tensor, mask, gt_masked_images, ref_images], dim=1)
342
+
343
+ # Predict the noise and compute loss
344
+ # Mixed-precision training
345
+ with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
346
+ pred_noise = unet(unet_input, timesteps, encoder_hidden_states=audio_embeds).sample
347
+
348
+ if config.run.recon_loss_weight != 0:
349
+ recon_loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
350
+ else:
351
+ recon_loss = 0
352
+
353
+ pred_latents = reversed_forward(noise_scheduler, pred_noise, timesteps, noisy_tensor)
354
+
355
+ if config.run.pixel_space_supervise:
356
+ pred_images = vae.decode(
357
+ rearrange(pred_latents, "b c f h w -> (b f) c h w") / vae.config.scaling_factor
358
+ + vae.config.shift_factor
359
+ ).sample
360
+
361
+ if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
362
+ pred_images_perceptual = pred_images[:, :, pred_images.shape[2] // 2 :, :]
363
+ gt_images_perceptual = gt_images[:, :, gt_images.shape[2] // 2 :, :]
364
+ lpips_loss = lpips_loss_func(pred_images_perceptual.float(), gt_images_perceptual.float()).mean()
365
+ else:
366
+ lpips_loss = 0
367
+
368
+ if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
369
+ trepa_pred_images = rearrange(pred_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
370
+ trepa_gt_images = rearrange(gt_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
371
+ trepa_loss = trepa_loss_func(trepa_pred_images, trepa_gt_images)
372
+ else:
373
+ trepa_loss = 0
374
+
375
+ if config.model.add_audio_layer and config.run.use_syncnet:
376
+ if config.run.pixel_space_supervise:
377
+ syncnet_input = rearrange(pred_images, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
378
+ else:
379
+ syncnet_input = rearrange(pred_latents, "b c f h w -> b (f c) h w")
380
+
381
+ if syncnet_config.data.lower_half:
382
+ height = syncnet_input.shape[2]
383
+ syncnet_input = syncnet_input[:, :, height // 2 :, :]
384
+ ones_tensor = torch.ones((config.data.batch_size, 1)).float().to(device=device)
385
+ vision_embeds, audio_embeds = syncnet(syncnet_input, mel)
386
+ sync_loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), ones_tensor).mean()
387
+ sync_loss_list.append(gather_loss(sync_loss, device))
388
+ else:
389
+ sync_loss = 0
390
+
391
+ loss = (
392
+ recon_loss * config.run.recon_loss_weight
393
+ + sync_loss * config.run.sync_loss_weight
394
+ + lpips_loss * config.run.perceptual_loss_weight
395
+ + trepa_loss * config.run.trepa_loss_weight
396
+ )
397
+
398
+ train_step_list.append(global_step)
399
+ if config.run.recon_loss_weight != 0:
400
+ recon_loss_list.append(gather_loss(recon_loss, device))
401
+
402
+ optimizer.zero_grad()
403
+
404
+ # Backpropagate
405
+ if config.run.mixed_precision_training:
406
+ scaler.scale(loss).backward()
407
+ """ >>> gradient clipping >>> """
408
+ scaler.unscale_(optimizer)
409
+ torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
410
+ """ <<< gradient clipping <<< """
411
+ scaler.step(optimizer)
412
+ scaler.update()
413
+ else:
414
+ loss.backward()
415
+ """ >>> gradient clipping >>> """
416
+ torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
417
+ """ <<< gradient clipping <<< """
418
+ optimizer.step()
419
+
420
+ # Check the grad of attn blocks for debugging
421
+ # print(unet.module.up_blocks[3].attentions[2].transformer_blocks[0].audio_cross_attn.attn.to_q.weight.grad)
422
+
423
+ lr_scheduler.step()
424
+ progress_bar.update(1)
425
+ global_step += 1
426
+
427
+ ### <<<< Training <<<< ###
428
+
429
+ # Save checkpoint and conduct validation
430
+ if is_main_process and (global_step % config.ckpt.save_ckpt_steps == 0):
431
+ if config.run.recon_loss_weight != 0:
432
+ plot_loss_chart(
433
+ os.path.join(output_dir, f"loss_charts/recon_loss_chart-{global_step}.png"),
434
+ ("Reconstruction loss", train_step_list, recon_loss_list),
435
+ )
436
+ if config.model.add_audio_layer:
437
+ if sync_loss_list != []:
438
+ plot_loss_chart(
439
+ os.path.join(output_dir, f"loss_charts/sync_loss_chart-{global_step}.png"),
440
+ ("Sync loss", train_step_list, sync_loss_list),
441
+ )
442
+ model_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
443
+ state_dict = {
444
+ "global_step": global_step,
445
+ "state_dict": unet.module.state_dict(), # to unwrap DDP
446
+ }
447
+ try:
448
+ torch.save(state_dict, model_save_path)
449
+ logger.info(f"Saved checkpoint to {model_save_path}")
450
+ except Exception as e:
451
+ logger.error(f"Error saving model: {e}")
452
+
453
+ # Validation
454
+ logger.info("Running validation... ")
455
+
456
+ validation_video_out_path = os.path.join(output_dir, f"val_videos/val_video_{global_step}.mp4")
457
+ validation_video_mask_path = os.path.join(output_dir, f"val_videos/val_video_mask.mp4")
458
+
459
+ with torch.autocast(device_type="cuda", dtype=torch.float16):
460
+ pipeline(
461
+ config.data.val_video_path,
462
+ config.data.val_audio_path,
463
+ validation_video_out_path,
464
+ validation_video_mask_path,
465
+ num_frames=config.data.num_frames,
466
+ num_inference_steps=config.run.inference_steps,
467
+ guidance_scale=config.run.guidance_scale,
468
+ weight_dtype=torch.float16,
469
+ width=config.data.resolution,
470
+ height=config.data.resolution,
471
+ mask=config.data.mask,
472
+ )
473
+
474
+ logger.info(f"Saved validation video output to {validation_video_out_path}")
475
+
476
+ val_step_list.append(global_step)
477
+
478
+ if config.model.add_audio_layer:
479
+ try:
480
+ _, conf = syncnet_eval(syncnet_eval_model, syncnet_detector, validation_video_out_path, "temp")
481
+ except Exception as e:
482
+ logger.info(e)
483
+ conf = 0
484
+ sync_conf_list.append(conf)
485
+ plot_loss_chart(
486
+ os.path.join(output_dir, f"loss_charts/sync_conf_chart-{global_step}.png"),
487
+ ("Sync confidence", val_step_list, sync_conf_list),
488
+ )
489
+
490
+ logs = {"step_loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0]}
491
+ progress_bar.set_postfix(**logs)
492
+
493
+ if global_step >= config.run.max_train_steps:
494
+ break
495
+
496
+ progress_bar.close()
497
+ dist.destroy_process_group()
498
+
499
+
500
+ if __name__ == "__main__":
501
+ parser = argparse.ArgumentParser()
502
+
503
+ # Config file path
504
+ parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")
505
+
506
+ args = parser.parse_args()
507
+ config = OmegaConf.load(args.unet_config_path)
508
+ config.unet_config_path = args.unet_config_path
509
+
510
+ main(config)