Spaces:
Sleeping
Sleeping
Commit
·
206c178
1
Parent(s):
20f3332
files added
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +45 -0
- LICENSE +201 -0
- README.md +1 -1
- app.py +161 -1
- cog.yaml +44 -0
- configs/audio.yaml +23 -0
- configs/scheduler_config.json +13 -0
- configs/syncnet/syncnet_16_latent.yaml +46 -0
- configs/syncnet/syncnet_16_pixel.yaml +45 -0
- configs/syncnet/syncnet_25_pixel.yaml +45 -0
- configs/unet/first_stage.yaml +103 -0
- configs/unet/second_stage.yaml +103 -0
- data/syncnet_dataset.py +153 -0
- data/unet_dataset.py +164 -0
- data_processing_pipeline.sh +9 -0
- eval/detectors/README.md +3 -0
- eval/detectors/__init__.py +1 -0
- eval/detectors/s3fd/__init__.py +61 -0
- eval/detectors/s3fd/box_utils.py +221 -0
- eval/detectors/s3fd/nets.py +174 -0
- eval/draw_syncnet_lines.py +70 -0
- eval/eval_fvd.py +96 -0
- eval/eval_sync_conf.py +77 -0
- eval/eval_sync_conf.sh +2 -0
- eval/eval_syncnet_acc.py +118 -0
- eval/eval_syncnet_acc.sh +3 -0
- eval/fvd.py +56 -0
- eval/hyper_iqa.py +343 -0
- eval/inference_videos.py +37 -0
- eval/syncnet/__init__.py +1 -0
- eval/syncnet/syncnet.py +113 -0
- eval/syncnet/syncnet_eval.py +220 -0
- eval/syncnet_detect.py +251 -0
- inference.sh +9 -0
- pipelines/lipsync_pipeline.py +470 -0
- predict.py +60 -0
- preprocess/affine_transform.py +137 -0
- preprocess/data_processing_pipeline.py +85 -0
- preprocess/detect_shot.py +62 -0
- preprocess/filter_high_resolution.py +112 -0
- preprocess/filter_visual_quality.py +127 -0
- preprocess/remove_broken_videos.py +43 -0
- preprocess/remove_incorrect_affined.py +81 -0
- preprocess/resample_fps_hz.py +70 -0
- preprocess/segment_videos.py +62 -0
- preprocess/sync_av.py +113 -0
- requirements.txt +30 -0
- scripts/inference.py +103 -0
- scripts/train_syncnet.py +336 -0
- scripts/train_unet.py +510 -0
.gitignore
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PyCharm files
|
2 |
+
.idea/
|
3 |
+
|
4 |
+
# macOS dir files
|
5 |
+
.DS_Store
|
6 |
+
|
7 |
+
# VS Code configuration dir
|
8 |
+
.vscode/
|
9 |
+
|
10 |
+
# Jupyter Notebook cache files
|
11 |
+
.ipynb_checkpoints/
|
12 |
+
*.ipynb
|
13 |
+
|
14 |
+
# Python cache files
|
15 |
+
__pycache__/
|
16 |
+
|
17 |
+
# folders
|
18 |
+
wandb/
|
19 |
+
*debug*
|
20 |
+
/debug
|
21 |
+
/output
|
22 |
+
/validation
|
23 |
+
/test
|
24 |
+
/models/
|
25 |
+
/venv/
|
26 |
+
/detect_results/
|
27 |
+
/temp
|
28 |
+
|
29 |
+
# checkpoint files
|
30 |
+
*.safetensors
|
31 |
+
*.ckpt
|
32 |
+
*.pt
|
33 |
+
|
34 |
+
# data files
|
35 |
+
*.mp4
|
36 |
+
*.avi
|
37 |
+
*.wav
|
38 |
+
*.png
|
39 |
+
*.jpg
|
40 |
+
*.jpeg
|
41 |
+
*.csv
|
42 |
+
|
43 |
+
!/latentsync/utils/mask.png
|
44 |
+
/checkpoints/
|
45 |
+
!/assets/*
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -9,4 +9,4 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1 +1,161 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pathlib import Path
|
3 |
+
from scripts.inference import main
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
import argparse
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
CONFIG_PATH = Path("configs/unet/second_stage.yaml")
|
9 |
+
CHECKPOINT_PATH = Path("checkpoints/latentsync_unet.pt")
|
10 |
+
|
11 |
+
|
12 |
+
def process_video(
|
13 |
+
video_path,
|
14 |
+
audio_path,
|
15 |
+
guidance_scale,
|
16 |
+
inference_steps,
|
17 |
+
seed,
|
18 |
+
):
|
19 |
+
# Create the temp directory if it doesn't exist
|
20 |
+
output_dir = Path("./temp")
|
21 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
22 |
+
|
23 |
+
# Convert paths to absolute Path objects and normalize them
|
24 |
+
video_file_path = Path(video_path)
|
25 |
+
video_path = video_file_path.absolute().as_posix()
|
26 |
+
audio_path = Path(audio_path).absolute().as_posix()
|
27 |
+
|
28 |
+
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
29 |
+
# Set the output path for the processed video
|
30 |
+
output_path = str(
|
31 |
+
output_dir / f"{video_file_path.stem}_{current_time}.mp4"
|
32 |
+
) # Change the filename as needed
|
33 |
+
|
34 |
+
config = OmegaConf.load(CONFIG_PATH)
|
35 |
+
|
36 |
+
config["run"].update(
|
37 |
+
{
|
38 |
+
"guidance_scale": guidance_scale,
|
39 |
+
"inference_steps": inference_steps,
|
40 |
+
}
|
41 |
+
)
|
42 |
+
|
43 |
+
# Parse the arguments
|
44 |
+
args = create_args(video_path, audio_path, output_path, guidance_scale, seed)
|
45 |
+
|
46 |
+
try:
|
47 |
+
result = main(
|
48 |
+
config=config,
|
49 |
+
args=args,
|
50 |
+
)
|
51 |
+
print("Processing completed successfully.")
|
52 |
+
return output_path # Ensure the output path is returned
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error during processing: {str(e)}")
|
55 |
+
raise gr.Error(f"Error during processing: {str(e)}")
|
56 |
+
|
57 |
+
|
58 |
+
def create_args(
|
59 |
+
video_path: str, audio_path: str, output_path: str, guidance_scale: float, seed: int
|
60 |
+
) -> argparse.Namespace:
|
61 |
+
parser = argparse.ArgumentParser()
|
62 |
+
parser.add_argument("--inference_ckpt_path", type=str, required=True)
|
63 |
+
parser.add_argument("--video_path", type=str, required=True)
|
64 |
+
parser.add_argument("--audio_path", type=str, required=True)
|
65 |
+
parser.add_argument("--video_out_path", type=str, required=True)
|
66 |
+
parser.add_argument("--guidance_scale", type=float, default=1.0)
|
67 |
+
parser.add_argument("--seed", type=int, default=1247)
|
68 |
+
|
69 |
+
return parser.parse_args(
|
70 |
+
[
|
71 |
+
"--inference_ckpt_path",
|
72 |
+
CHECKPOINT_PATH.absolute().as_posix(),
|
73 |
+
"--video_path",
|
74 |
+
video_path,
|
75 |
+
"--audio_path",
|
76 |
+
audio_path,
|
77 |
+
"--video_out_path",
|
78 |
+
output_path,
|
79 |
+
"--guidance_scale",
|
80 |
+
str(guidance_scale),
|
81 |
+
"--seed",
|
82 |
+
str(seed),
|
83 |
+
]
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
# Create Gradio interface
|
88 |
+
with gr.Blocks(title="LatentSync Video Processing") as demo:
|
89 |
+
gr.Markdown(
|
90 |
+
"""
|
91 |
+
# LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
|
92 |
+
Upload a video and audio file to process with LatentSync model.
|
93 |
+
|
94 |
+
<div align="center">
|
95 |
+
<strong>Chunyu Li1,2 Chao Zhang1 Weikai Xu1 Jinghui Xie1,† Weiguo Feng1
|
96 |
+
Bingyue Peng1 Weiwei Xing2,†</strong>
|
97 |
+
</div>
|
98 |
+
|
99 |
+
<div align="center">
|
100 |
+
<strong>1ByteDance 2Beijing Jiaotong University</strong>
|
101 |
+
</div>
|
102 |
+
|
103 |
+
<div style="display:flex;justify-content:center;column-gap:4px;">
|
104 |
+
<a href="https://github.com/bytedance/LatentSync">
|
105 |
+
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
106 |
+
</a>
|
107 |
+
<a href="https://arxiv.org/pdf/2412.09262">
|
108 |
+
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
|
109 |
+
</a>
|
110 |
+
</div>
|
111 |
+
"""
|
112 |
+
)
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
video_input = gr.Video(label="Input Video")
|
117 |
+
audio_input = gr.Audio(label="Input Audio", type="filepath")
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
guidance_scale = gr.Slider(
|
121 |
+
minimum=0.1,
|
122 |
+
maximum=3.0,
|
123 |
+
value=1.0,
|
124 |
+
step=0.1,
|
125 |
+
label="Guidance Scale",
|
126 |
+
)
|
127 |
+
inference_steps = gr.Slider(
|
128 |
+
minimum=1, maximum=50, value=20, step=1, label="Inference Steps"
|
129 |
+
)
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
seed = gr.Number(value=1247, label="Random Seed", precision=0)
|
133 |
+
|
134 |
+
process_btn = gr.Button("Process Video")
|
135 |
+
|
136 |
+
with gr.Column():
|
137 |
+
video_output = gr.Video(label="Output Video")
|
138 |
+
|
139 |
+
gr.Examples(
|
140 |
+
examples=[
|
141 |
+
["assets/demo1_video.mp4", "assets/demo1_audio.wav"],
|
142 |
+
["assets/demo2_video.mp4", "assets/demo2_audio.wav"],
|
143 |
+
["assets/demo3_video.mp4", "assets/demo3_audio.wav"],
|
144 |
+
],
|
145 |
+
inputs=[video_input, audio_input],
|
146 |
+
)
|
147 |
+
|
148 |
+
process_btn.click(
|
149 |
+
fn=process_video,
|
150 |
+
inputs=[
|
151 |
+
video_input,
|
152 |
+
audio_input,
|
153 |
+
guidance_scale,
|
154 |
+
inference_steps,
|
155 |
+
seed,
|
156 |
+
],
|
157 |
+
outputs=video_output,
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo.launch(inbrowser=True, share=True)
|
cog.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for Cog ⚙️
|
2 |
+
# Reference: https://cog.run/yaml
|
3 |
+
|
4 |
+
build:
|
5 |
+
gpu: true
|
6 |
+
cuda: "12.1"
|
7 |
+
system_packages:
|
8 |
+
- "ffmpeg"
|
9 |
+
- "libgl1"
|
10 |
+
python_version: "3.10.13"
|
11 |
+
python_packages:
|
12 |
+
- "torch==2.2.2"
|
13 |
+
- "torchvision"
|
14 |
+
- "triton==2.2.0"
|
15 |
+
- "diffusers==0.11.1"
|
16 |
+
- "transformers==4.38.0"
|
17 |
+
- "huggingface-hub==0.25.2"
|
18 |
+
- "imageio==2.27.0"
|
19 |
+
- "decord==0.6.0"
|
20 |
+
- "accelerate==0.26.1"
|
21 |
+
- "einops==0.7.0"
|
22 |
+
- "omegaconf==2.3.0"
|
23 |
+
- "safetensors==0.4.2"
|
24 |
+
- "opencv-python==4.9.0.80"
|
25 |
+
- "mediapipe==0.10.11"
|
26 |
+
- "av==11.0.0"
|
27 |
+
- "torch-fidelity==0.3.0"
|
28 |
+
- "torchmetrics==1.3.1"
|
29 |
+
- "python_speech_features==0.6"
|
30 |
+
- "librosa==0.10.1"
|
31 |
+
- "scenedetect==0.6.1"
|
32 |
+
- "ffmpeg-python==0.2.0"
|
33 |
+
- "lpips==0.1.4"
|
34 |
+
- "face-alignment==1.4.1"
|
35 |
+
- "ninja==1.11.1.1"
|
36 |
+
- "pandas==2.0.3"
|
37 |
+
- "numpy==1.24.4"
|
38 |
+
- "xformers==0.0.26"
|
39 |
+
|
40 |
+
run:
|
41 |
+
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.8.2/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
|
42 |
+
|
43 |
+
# predict.py defines how predictions are run on your model
|
44 |
+
predict: "predict.py:Predictor"
|
configs/audio.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audio:
|
2 |
+
num_mels: 80 # Number of mel-spectrogram channels and local conditioning dimensionality
|
3 |
+
rescale: true # Whether to rescale audio prior to preprocessing
|
4 |
+
rescaling_max: 0.9 # Rescaling value
|
5 |
+
use_lws:
|
6 |
+
false # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
|
7 |
+
# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
|
8 |
+
# Does not work if n_ffit is not multiple of hop_size!!
|
9 |
+
n_fft: 800 # Extra window size is filled with 0 paddings to match this parameter
|
10 |
+
hop_size: 200 # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
|
11 |
+
win_size: 800 # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
|
12 |
+
sample_rate: 16000 # 16000Hz (corresponding to librispeech) (sox --i <filename>)
|
13 |
+
frame_shift_ms: null
|
14 |
+
signal_normalization: true
|
15 |
+
allow_clipping_in_normalization: true
|
16 |
+
symmetric_mels: true
|
17 |
+
max_abs_value: 4.0
|
18 |
+
preemphasize: true # whether to apply filter
|
19 |
+
preemphasis: 0.97 # filter coefficient.
|
20 |
+
min_level_db: -100
|
21 |
+
ref_level_db: 20
|
22 |
+
fmin: 55
|
23 |
+
fmax: 7600
|
configs/scheduler_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.6.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"set_alpha_to_one": false,
|
10 |
+
"steps_offset": 1,
|
11 |
+
"trained_betas": null,
|
12 |
+
"skip_prk_steps": true
|
13 |
+
}
|
configs/syncnet/syncnet_16_latent.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 52)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [32, 64, 128, 256, 512, 1024]
|
5 |
+
downsample_factors: [[2, 1], 2, 2, 2, 2, [2, 3]]
|
6 |
+
attn_blocks: [0, 0, 0, 0, 0, 0]
|
7 |
+
dropout: 0.0
|
8 |
+
visual_encoder: # input (64, 32, 32)
|
9 |
+
in_channels: 64
|
10 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024]
|
11 |
+
downsample_factors: [2, 2, 2, 1, 2, 2]
|
12 |
+
attn_blocks: [0, 0, 0, 0, 0, 0]
|
13 |
+
dropout: 0.0
|
14 |
+
|
15 |
+
ckpt:
|
16 |
+
resume_ckpt_path: ""
|
17 |
+
inference_ckpt_path: ""
|
18 |
+
save_ckpt_steps: 2500
|
19 |
+
|
20 |
+
data:
|
21 |
+
train_output_dir: output/syncnet
|
22 |
+
num_val_samples: 1200
|
23 |
+
batch_size: 120 # 40
|
24 |
+
num_workers: 11 # 11
|
25 |
+
latent_space: true
|
26 |
+
num_frames: 16
|
27 |
+
resolution: 256
|
28 |
+
train_fileslist: ""
|
29 |
+
train_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/train
|
30 |
+
val_fileslist: ""
|
31 |
+
val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
|
32 |
+
audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
33 |
+
lower_half: false
|
34 |
+
pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
|
35 |
+
audio_sample_rate: 16000
|
36 |
+
video_fps: 25
|
37 |
+
|
38 |
+
optimizer:
|
39 |
+
lr: 1e-5
|
40 |
+
max_grad_norm: 1.0
|
41 |
+
|
42 |
+
run:
|
43 |
+
max_train_steps: 10000000
|
44 |
+
validation_steps: 2500
|
45 |
+
mixed_precision_training: true
|
46 |
+
seed: 42
|
configs/syncnet/syncnet_16_pixel.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 52)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [32, 64, 128, 256, 512, 1024, 2048]
|
5 |
+
downsample_factors: [[2, 1], 2, 2, 1, 2, 2, [2, 3]]
|
6 |
+
attn_blocks: [0, 0, 0, 0, 0, 0, 0]
|
7 |
+
dropout: 0.0
|
8 |
+
visual_encoder: # input (48, 128, 256)
|
9 |
+
in_channels: 48
|
10 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024, 2048, 2048]
|
11 |
+
downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
|
12 |
+
attn_blocks: [0, 0, 0, 0, 0, 0, 0, 0]
|
13 |
+
dropout: 0.0
|
14 |
+
|
15 |
+
ckpt:
|
16 |
+
resume_ckpt_path: ""
|
17 |
+
inference_ckpt_path: checkpoints/latentsync_syncnet.pt
|
18 |
+
save_ckpt_steps: 2500
|
19 |
+
|
20 |
+
data:
|
21 |
+
train_output_dir: debug/syncnet
|
22 |
+
num_val_samples: 2048
|
23 |
+
batch_size: 128 # 128
|
24 |
+
num_workers: 11 # 11
|
25 |
+
latent_space: false
|
26 |
+
num_frames: 16
|
27 |
+
resolution: 256
|
28 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
29 |
+
train_data_dir: ""
|
30 |
+
val_fileslist: ""
|
31 |
+
val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
|
32 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
33 |
+
lower_half: true
|
34 |
+
audio_sample_rate: 16000
|
35 |
+
video_fps: 25
|
36 |
+
|
37 |
+
optimizer:
|
38 |
+
lr: 1e-5
|
39 |
+
max_grad_norm: 1.0
|
40 |
+
|
41 |
+
run:
|
42 |
+
max_train_steps: 10000000
|
43 |
+
validation_steps: 2500
|
44 |
+
mixed_precision_training: true
|
45 |
+
seed: 42
|
configs/syncnet/syncnet_25_pixel.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 80)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024]
|
5 |
+
downsample_factors: [2, 2, 2, 2, 2, 2]
|
6 |
+
dropout: 0.0
|
7 |
+
visual_encoder: # input (75, 128, 256)
|
8 |
+
in_channels: 75
|
9 |
+
block_out_channels: [128, 128, 256, 256, 512, 512, 1024, 1024]
|
10 |
+
downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
|
11 |
+
dropout: 0.0
|
12 |
+
|
13 |
+
ckpt:
|
14 |
+
resume_ckpt_path: ""
|
15 |
+
inference_ckpt_path: ""
|
16 |
+
save_ckpt_steps: 2500
|
17 |
+
|
18 |
+
data:
|
19 |
+
train_output_dir: debug/syncnet
|
20 |
+
num_val_samples: 2048
|
21 |
+
batch_size: 64 # 64
|
22 |
+
num_workers: 11 # 11
|
23 |
+
latent_space: false
|
24 |
+
num_frames: 25
|
25 |
+
resolution: 256
|
26 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_vox_avatars_ads_affine.txt
|
27 |
+
# /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_voxceleb_avatars_affine.txt
|
28 |
+
train_data_dir: ""
|
29 |
+
val_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/vox_affine_val.txt
|
30 |
+
# /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/voxceleb_val.txt
|
31 |
+
val_data_dir: ""
|
32 |
+
audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel
|
33 |
+
lower_half: true
|
34 |
+
pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
|
35 |
+
audio_sample_rate: 16000
|
36 |
+
video_fps: 25
|
37 |
+
|
38 |
+
optimizer:
|
39 |
+
lr: 1e-5
|
40 |
+
max_grad_norm: 1.0
|
41 |
+
|
42 |
+
run:
|
43 |
+
max_train_steps: 10000000
|
44 |
+
mixed_precision_training: true
|
45 |
+
seed: 42
|
configs/unet/first_stage.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
|
3 |
+
train_output_dir: debug/unet
|
4 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
5 |
+
train_data_dir: ""
|
6 |
+
audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
|
7 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
8 |
+
|
9 |
+
val_video_path: assets/demo1_video.mp4
|
10 |
+
val_audio_path: assets/demo1_audio.wav
|
11 |
+
batch_size: 8 # 8
|
12 |
+
num_workers: 11 # 11
|
13 |
+
num_frames: 16
|
14 |
+
resolution: 256
|
15 |
+
mask: fix_mask
|
16 |
+
audio_sample_rate: 16000
|
17 |
+
video_fps: 25
|
18 |
+
|
19 |
+
ckpt:
|
20 |
+
resume_ckpt_path: checkpoints/latentsync_unet.pt
|
21 |
+
save_ckpt_steps: 5000
|
22 |
+
|
23 |
+
run:
|
24 |
+
pixel_space_supervise: false
|
25 |
+
use_syncnet: false
|
26 |
+
sync_loss_weight: 0.05 # 1/283
|
27 |
+
perceptual_loss_weight: 0.1 # 0.1
|
28 |
+
recon_loss_weight: 1 # 1
|
29 |
+
guidance_scale: 1.0 # 1.5 or 1.0
|
30 |
+
trepa_loss_weight: 10
|
31 |
+
inference_steps: 20
|
32 |
+
seed: 1247
|
33 |
+
use_mixed_noise: true
|
34 |
+
mixed_noise_alpha: 1 # 1
|
35 |
+
mixed_precision_training: true
|
36 |
+
enable_gradient_checkpointing: false
|
37 |
+
enable_xformers_memory_efficient_attention: true
|
38 |
+
max_train_steps: 10000000
|
39 |
+
max_train_epochs: -1
|
40 |
+
|
41 |
+
optimizer:
|
42 |
+
lr: 1e-5
|
43 |
+
scale_lr: false
|
44 |
+
max_grad_norm: 1.0
|
45 |
+
lr_scheduler: constant
|
46 |
+
lr_warmup_steps: 0
|
47 |
+
|
48 |
+
model:
|
49 |
+
act_fn: silu
|
50 |
+
add_audio_layer: true
|
51 |
+
custom_audio_layer: false
|
52 |
+
audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
|
53 |
+
attention_head_dim: 8
|
54 |
+
block_out_channels: [320, 640, 1280, 1280]
|
55 |
+
center_input_sample: false
|
56 |
+
cross_attention_dim: 384
|
57 |
+
down_block_types:
|
58 |
+
[
|
59 |
+
"CrossAttnDownBlock3D",
|
60 |
+
"CrossAttnDownBlock3D",
|
61 |
+
"CrossAttnDownBlock3D",
|
62 |
+
"DownBlock3D",
|
63 |
+
]
|
64 |
+
mid_block_type: UNetMidBlock3DCrossAttn
|
65 |
+
up_block_types:
|
66 |
+
[
|
67 |
+
"UpBlock3D",
|
68 |
+
"CrossAttnUpBlock3D",
|
69 |
+
"CrossAttnUpBlock3D",
|
70 |
+
"CrossAttnUpBlock3D",
|
71 |
+
]
|
72 |
+
downsample_padding: 1
|
73 |
+
flip_sin_to_cos: true
|
74 |
+
freq_shift: 0
|
75 |
+
in_channels: 13 # 49
|
76 |
+
layers_per_block: 2
|
77 |
+
mid_block_scale_factor: 1
|
78 |
+
norm_eps: 1e-5
|
79 |
+
norm_num_groups: 32
|
80 |
+
out_channels: 4 # 16
|
81 |
+
sample_size: 64
|
82 |
+
resnet_time_scale_shift: default # Choose between [default, scale_shift]
|
83 |
+
unet_use_cross_frame_attention: false
|
84 |
+
unet_use_temporal_attention: false
|
85 |
+
|
86 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
87 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
|
88 |
+
# We decied to leave the code here for possible future usage
|
89 |
+
use_motion_module: false
|
90 |
+
motion_module_resolutions: [1, 2, 4, 8]
|
91 |
+
motion_module_mid_block: false
|
92 |
+
motion_module_decoder_only: false
|
93 |
+
motion_module_type: Vanilla
|
94 |
+
motion_module_kwargs:
|
95 |
+
num_attention_heads: 8
|
96 |
+
num_transformer_block: 1
|
97 |
+
attention_block_types:
|
98 |
+
- Temporal_Self
|
99 |
+
- Temporal_Self
|
100 |
+
temporal_position_encoding: true
|
101 |
+
temporal_position_encoding_max_len: 16
|
102 |
+
temporal_attention_dim_div: 1
|
103 |
+
zero_initialize: true
|
configs/unet/second_stage.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
|
3 |
+
train_output_dir: debug/unet
|
4 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
5 |
+
train_data_dir: ""
|
6 |
+
audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
|
7 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
8 |
+
|
9 |
+
val_video_path: assets/demo1_video.mp4
|
10 |
+
val_audio_path: assets/demo1_audio.wav
|
11 |
+
batch_size: 2 # 8
|
12 |
+
num_workers: 11 # 11
|
13 |
+
num_frames: 16
|
14 |
+
resolution: 256
|
15 |
+
mask: fix_mask
|
16 |
+
audio_sample_rate: 16000
|
17 |
+
video_fps: 25
|
18 |
+
|
19 |
+
ckpt:
|
20 |
+
resume_ckpt_path: checkpoints/latentsync_unet.pt
|
21 |
+
save_ckpt_steps: 5000
|
22 |
+
|
23 |
+
run:
|
24 |
+
pixel_space_supervise: true
|
25 |
+
use_syncnet: true
|
26 |
+
sync_loss_weight: 0.05 # 1/283
|
27 |
+
perceptual_loss_weight: 0.1 # 0.1
|
28 |
+
recon_loss_weight: 1 # 1
|
29 |
+
guidance_scale: 1.0 # 1.5 or 1.0
|
30 |
+
trepa_loss_weight: 10
|
31 |
+
inference_steps: 20
|
32 |
+
seed: 1247
|
33 |
+
use_mixed_noise: true
|
34 |
+
mixed_noise_alpha: 1 # 1
|
35 |
+
mixed_precision_training: true
|
36 |
+
enable_gradient_checkpointing: false
|
37 |
+
enable_xformers_memory_efficient_attention: true
|
38 |
+
max_train_steps: 10000000
|
39 |
+
max_train_epochs: -1
|
40 |
+
|
41 |
+
optimizer:
|
42 |
+
lr: 1e-5
|
43 |
+
scale_lr: false
|
44 |
+
max_grad_norm: 1.0
|
45 |
+
lr_scheduler: constant
|
46 |
+
lr_warmup_steps: 0
|
47 |
+
|
48 |
+
model:
|
49 |
+
act_fn: silu
|
50 |
+
add_audio_layer: true
|
51 |
+
custom_audio_layer: false
|
52 |
+
audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
|
53 |
+
attention_head_dim: 8
|
54 |
+
block_out_channels: [320, 640, 1280, 1280]
|
55 |
+
center_input_sample: false
|
56 |
+
cross_attention_dim: 384
|
57 |
+
down_block_types:
|
58 |
+
[
|
59 |
+
"CrossAttnDownBlock3D",
|
60 |
+
"CrossAttnDownBlock3D",
|
61 |
+
"CrossAttnDownBlock3D",
|
62 |
+
"DownBlock3D",
|
63 |
+
]
|
64 |
+
mid_block_type: UNetMidBlock3DCrossAttn
|
65 |
+
up_block_types:
|
66 |
+
[
|
67 |
+
"UpBlock3D",
|
68 |
+
"CrossAttnUpBlock3D",
|
69 |
+
"CrossAttnUpBlock3D",
|
70 |
+
"CrossAttnUpBlock3D",
|
71 |
+
]
|
72 |
+
downsample_padding: 1
|
73 |
+
flip_sin_to_cos: true
|
74 |
+
freq_shift: 0
|
75 |
+
in_channels: 13 # 49
|
76 |
+
layers_per_block: 2
|
77 |
+
mid_block_scale_factor: 1
|
78 |
+
norm_eps: 1e-5
|
79 |
+
norm_num_groups: 32
|
80 |
+
out_channels: 4 # 16
|
81 |
+
sample_size: 64
|
82 |
+
resnet_time_scale_shift: default # Choose between [default, scale_shift]
|
83 |
+
unet_use_cross_frame_attention: false
|
84 |
+
unet_use_temporal_attention: false
|
85 |
+
|
86 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
87 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
|
88 |
+
# We decied to leave the code here for possible future usage
|
89 |
+
use_motion_module: false
|
90 |
+
motion_module_resolutions: [1, 2, 4, 8]
|
91 |
+
motion_module_mid_block: false
|
92 |
+
motion_module_decoder_only: false
|
93 |
+
motion_module_type: Vanilla
|
94 |
+
motion_module_kwargs:
|
95 |
+
num_attention_heads: 8
|
96 |
+
num_transformer_block: 1
|
97 |
+
attention_block_types:
|
98 |
+
- Temporal_Self
|
99 |
+
- Temporal_Self
|
100 |
+
temporal_position_encoding: true
|
101 |
+
temporal_position_encoding_max_len: 16
|
102 |
+
temporal_attention_dim_div: 1
|
103 |
+
zero_initialize: true
|
data/syncnet_dataset.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import numpy as np
|
17 |
+
from torch.utils.data import Dataset
|
18 |
+
import torch
|
19 |
+
import random
|
20 |
+
from ..utils.util import gather_video_paths_recursively
|
21 |
+
from ..utils.image_processor import ImageProcessor
|
22 |
+
from ..utils.audio import melspectrogram
|
23 |
+
import math
|
24 |
+
|
25 |
+
from decord import AudioReader, VideoReader, cpu
|
26 |
+
|
27 |
+
|
28 |
+
class SyncNetDataset(Dataset):
|
29 |
+
def __init__(self, data_dir: str, fileslist: str, config):
|
30 |
+
if fileslist != "":
|
31 |
+
with open(fileslist) as file:
|
32 |
+
self.video_paths = [line.rstrip() for line in file]
|
33 |
+
elif data_dir != "":
|
34 |
+
self.video_paths = gather_video_paths_recursively(data_dir)
|
35 |
+
else:
|
36 |
+
raise ValueError("data_dir and fileslist cannot be both empty")
|
37 |
+
|
38 |
+
self.resolution = config.data.resolution
|
39 |
+
self.num_frames = config.data.num_frames
|
40 |
+
|
41 |
+
self.mel_window_length = math.ceil(self.num_frames / 5 * 16)
|
42 |
+
|
43 |
+
self.audio_sample_rate = config.data.audio_sample_rate
|
44 |
+
self.video_fps = config.data.video_fps
|
45 |
+
self.audio_samples_length = int(
|
46 |
+
config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames
|
47 |
+
)
|
48 |
+
self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half")
|
49 |
+
self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
|
50 |
+
os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
|
51 |
+
|
52 |
+
def __len__(self):
|
53 |
+
return len(self.video_paths)
|
54 |
+
|
55 |
+
def read_audio(self, video_path: str):
|
56 |
+
ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
|
57 |
+
original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
|
58 |
+
return torch.from_numpy(original_mel)
|
59 |
+
|
60 |
+
def crop_audio_window(self, original_mel, start_index):
|
61 |
+
start_idx = int(80.0 * (start_index / float(self.video_fps)))
|
62 |
+
end_idx = start_idx + self.mel_window_length
|
63 |
+
return original_mel[:, start_idx:end_idx].unsqueeze(0)
|
64 |
+
|
65 |
+
def get_frames(self, video_reader: VideoReader):
|
66 |
+
total_num_frames = len(video_reader)
|
67 |
+
|
68 |
+
start_idx = random.randint(0, total_num_frames - self.num_frames)
|
69 |
+
frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
|
70 |
+
|
71 |
+
while True:
|
72 |
+
wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
|
73 |
+
# wrong_start_idx = random.randint(
|
74 |
+
# max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25)
|
75 |
+
# )
|
76 |
+
if wrong_start_idx == start_idx:
|
77 |
+
continue
|
78 |
+
# if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames:
|
79 |
+
# continue
|
80 |
+
wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
|
81 |
+
break
|
82 |
+
|
83 |
+
frames = video_reader.get_batch(frames_index).asnumpy()
|
84 |
+
wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
|
85 |
+
|
86 |
+
return frames, wrong_frames, start_idx
|
87 |
+
|
88 |
+
def worker_init_fn(self, worker_id):
|
89 |
+
# Initialize the face mesh object in each worker process,
|
90 |
+
# because the face mesh object cannot be called in subprocesses
|
91 |
+
self.worker_id = worker_id
|
92 |
+
# setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask))
|
93 |
+
|
94 |
+
def __getitem__(self, idx):
|
95 |
+
# image_processor = getattr(self, f"image_processor_{self.worker_id}")
|
96 |
+
while True:
|
97 |
+
try:
|
98 |
+
idx = random.randint(0, len(self) - 1)
|
99 |
+
|
100 |
+
# Get video file path
|
101 |
+
video_path = self.video_paths[idx]
|
102 |
+
|
103 |
+
vr = VideoReader(video_path, ctx=cpu(self.worker_id))
|
104 |
+
|
105 |
+
if len(vr) < 2 * self.num_frames:
|
106 |
+
continue
|
107 |
+
|
108 |
+
frames, wrong_frames, start_idx = self.get_frames(vr)
|
109 |
+
|
110 |
+
mel_cache_path = os.path.join(
|
111 |
+
self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
|
112 |
+
)
|
113 |
+
|
114 |
+
if os.path.isfile(mel_cache_path):
|
115 |
+
try:
|
116 |
+
original_mel = torch.load(mel_cache_path)
|
117 |
+
except Exception as e:
|
118 |
+
print(f"{type(e).__name__} - {e} - {mel_cache_path}")
|
119 |
+
os.remove(mel_cache_path)
|
120 |
+
original_mel = self.read_audio(video_path)
|
121 |
+
torch.save(original_mel, mel_cache_path)
|
122 |
+
else:
|
123 |
+
original_mel = self.read_audio(video_path)
|
124 |
+
torch.save(original_mel, mel_cache_path)
|
125 |
+
|
126 |
+
mel = self.crop_audio_window(original_mel, start_idx)
|
127 |
+
|
128 |
+
if mel.shape[-1] != self.mel_window_length:
|
129 |
+
continue
|
130 |
+
|
131 |
+
if random.choice([True, False]):
|
132 |
+
y = torch.ones(1).float()
|
133 |
+
chosen_frames = frames
|
134 |
+
else:
|
135 |
+
y = torch.zeros(1).float()
|
136 |
+
chosen_frames = wrong_frames
|
137 |
+
|
138 |
+
chosen_frames = self.image_processor.process_images(chosen_frames)
|
139 |
+
# chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images(
|
140 |
+
# chosen_frames, affine_transform=True
|
141 |
+
# )
|
142 |
+
|
143 |
+
vr.seek(0) # avoid memory leak
|
144 |
+
break
|
145 |
+
|
146 |
+
except Exception as e: # Handle the exception of face not detcted
|
147 |
+
print(f"{type(e).__name__} - {e} - {video_path}")
|
148 |
+
if "vr" in locals():
|
149 |
+
vr.seek(0) # avoid memory leak
|
150 |
+
|
151 |
+
sample = dict(frames=chosen_frames, audio_samples=mel, y=y)
|
152 |
+
|
153 |
+
return sample
|
data/unet_dataset.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import numpy as np
|
17 |
+
from torch.utils.data import Dataset
|
18 |
+
import torch
|
19 |
+
import random
|
20 |
+
import cv2
|
21 |
+
from ..utils.image_processor import ImageProcessor, load_fixed_mask
|
22 |
+
from ..utils.audio import melspectrogram
|
23 |
+
from decord import AudioReader, VideoReader, cpu
|
24 |
+
|
25 |
+
|
26 |
+
class UNetDataset(Dataset):
|
27 |
+
def __init__(self, train_data_dir: str, config):
|
28 |
+
if config.data.train_fileslist != "":
|
29 |
+
with open(config.data.train_fileslist) as file:
|
30 |
+
self.video_paths = [line.rstrip() for line in file]
|
31 |
+
elif train_data_dir != "":
|
32 |
+
self.video_paths = []
|
33 |
+
for file in os.listdir(train_data_dir):
|
34 |
+
if file.endswith(".mp4"):
|
35 |
+
self.video_paths.append(os.path.join(train_data_dir, file))
|
36 |
+
else:
|
37 |
+
raise ValueError("data_dir and fileslist cannot be both empty")
|
38 |
+
|
39 |
+
self.resolution = config.data.resolution
|
40 |
+
self.num_frames = config.data.num_frames
|
41 |
+
|
42 |
+
if self.num_frames == 16:
|
43 |
+
self.mel_window_length = 52
|
44 |
+
elif self.num_frames == 5:
|
45 |
+
self.mel_window_length = 16
|
46 |
+
else:
|
47 |
+
raise NotImplementedError("Only support 16 and 5 frames now")
|
48 |
+
|
49 |
+
self.audio_sample_rate = config.data.audio_sample_rate
|
50 |
+
self.video_fps = config.data.video_fps
|
51 |
+
self.mask = config.data.mask
|
52 |
+
self.mask_image = load_fixed_mask(self.resolution)
|
53 |
+
self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
|
54 |
+
self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
|
55 |
+
os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
|
56 |
+
|
57 |
+
def __len__(self):
|
58 |
+
return len(self.video_paths)
|
59 |
+
|
60 |
+
def read_audio(self, video_path: str):
|
61 |
+
ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
|
62 |
+
original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
|
63 |
+
return torch.from_numpy(original_mel)
|
64 |
+
|
65 |
+
def crop_audio_window(self, original_mel, start_index):
|
66 |
+
start_idx = int(80.0 * (start_index / float(self.video_fps)))
|
67 |
+
end_idx = start_idx + self.mel_window_length
|
68 |
+
return original_mel[:, start_idx:end_idx].unsqueeze(0)
|
69 |
+
|
70 |
+
def get_frames(self, video_reader: VideoReader):
|
71 |
+
total_num_frames = len(video_reader)
|
72 |
+
|
73 |
+
start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2)
|
74 |
+
frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
|
75 |
+
|
76 |
+
while True:
|
77 |
+
wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
|
78 |
+
if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames:
|
79 |
+
continue
|
80 |
+
wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
|
81 |
+
break
|
82 |
+
|
83 |
+
frames = video_reader.get_batch(frames_index).asnumpy()
|
84 |
+
wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
|
85 |
+
|
86 |
+
return frames, wrong_frames, start_idx
|
87 |
+
|
88 |
+
def worker_init_fn(self, worker_id):
|
89 |
+
# Initialize the face mesh object in each worker process,
|
90 |
+
# because the face mesh object cannot be called in subprocesses
|
91 |
+
self.worker_id = worker_id
|
92 |
+
setattr(
|
93 |
+
self,
|
94 |
+
f"image_processor_{worker_id}",
|
95 |
+
ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image),
|
96 |
+
)
|
97 |
+
|
98 |
+
def __getitem__(self, idx):
|
99 |
+
image_processor = getattr(self, f"image_processor_{self.worker_id}")
|
100 |
+
while True:
|
101 |
+
try:
|
102 |
+
idx = random.randint(0, len(self) - 1)
|
103 |
+
|
104 |
+
# Get video file path
|
105 |
+
video_path = self.video_paths[idx]
|
106 |
+
|
107 |
+
vr = VideoReader(video_path, ctx=cpu(self.worker_id))
|
108 |
+
|
109 |
+
if len(vr) < 3 * self.num_frames:
|
110 |
+
continue
|
111 |
+
|
112 |
+
continuous_frames, ref_frames, start_idx = self.get_frames(vr)
|
113 |
+
|
114 |
+
if self.load_audio_data:
|
115 |
+
mel_cache_path = os.path.join(
|
116 |
+
self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
|
117 |
+
)
|
118 |
+
|
119 |
+
if os.path.isfile(mel_cache_path):
|
120 |
+
try:
|
121 |
+
original_mel = torch.load(mel_cache_path)
|
122 |
+
except Exception as e:
|
123 |
+
print(f"{type(e).__name__} - {e} - {mel_cache_path}")
|
124 |
+
os.remove(mel_cache_path)
|
125 |
+
original_mel = self.read_audio(video_path)
|
126 |
+
torch.save(original_mel, mel_cache_path)
|
127 |
+
else:
|
128 |
+
original_mel = self.read_audio(video_path)
|
129 |
+
torch.save(original_mel, mel_cache_path)
|
130 |
+
|
131 |
+
mel = self.crop_audio_window(original_mel, start_idx)
|
132 |
+
|
133 |
+
if mel.shape[-1] != self.mel_window_length:
|
134 |
+
continue
|
135 |
+
else:
|
136 |
+
mel = []
|
137 |
+
|
138 |
+
gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images(
|
139 |
+
continuous_frames, affine_transform=False
|
140 |
+
)
|
141 |
+
|
142 |
+
if self.mask == "fix_mask":
|
143 |
+
ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False)
|
144 |
+
else:
|
145 |
+
ref = image_processor.process_images(ref_frames)
|
146 |
+
vr.seek(0) # avoid memory leak
|
147 |
+
break
|
148 |
+
|
149 |
+
except Exception as e: # Handle the exception of face not detcted
|
150 |
+
print(f"{type(e).__name__} - {e} - {video_path}")
|
151 |
+
if "vr" in locals():
|
152 |
+
vr.seek(0) # avoid memory leak
|
153 |
+
|
154 |
+
sample = dict(
|
155 |
+
gt=gt,
|
156 |
+
masked_gt=masked_gt,
|
157 |
+
ref=ref,
|
158 |
+
mel=mel,
|
159 |
+
mask=mask,
|
160 |
+
video_path=video_path,
|
161 |
+
start_idx=start_idx,
|
162 |
+
)
|
163 |
+
|
164 |
+
return sample
|
data_processing_pipeline.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
python -m preprocess.data_processing_pipeline \
|
4 |
+
--total_num_workers 20 \
|
5 |
+
--per_gpu_num_workers 10 \
|
6 |
+
--resolution 256 \
|
7 |
+
--sync_conf_threshold 3 \
|
8 |
+
--temp_dir temp \
|
9 |
+
--input_dir /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/raw
|
eval/detectors/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Face detector
|
2 |
+
|
3 |
+
This face detector is adapted from `https://github.com/cs-giung/face-detection-pytorch`.
|
eval/detectors/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .s3fd import S3FD
|
eval/detectors/s3fd/__init__.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from .nets import S3FDNet
|
7 |
+
from .box_utils import nms_
|
8 |
+
|
9 |
+
PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth'
|
10 |
+
img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32')
|
11 |
+
|
12 |
+
|
13 |
+
class S3FD():
|
14 |
+
|
15 |
+
def __init__(self, device='cuda'):
|
16 |
+
|
17 |
+
tstamp = time.time()
|
18 |
+
self.device = device
|
19 |
+
|
20 |
+
print('[S3FD] loading with', self.device)
|
21 |
+
self.net = S3FDNet(device=self.device).to(self.device)
|
22 |
+
state_dict = torch.load(PATH_WEIGHT, map_location=self.device)
|
23 |
+
self.net.load_state_dict(state_dict)
|
24 |
+
self.net.eval()
|
25 |
+
print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp))
|
26 |
+
|
27 |
+
def detect_faces(self, image, conf_th=0.8, scales=[1]):
|
28 |
+
|
29 |
+
w, h = image.shape[1], image.shape[0]
|
30 |
+
|
31 |
+
bboxes = np.empty(shape=(0, 5))
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
for s in scales:
|
35 |
+
scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
|
36 |
+
|
37 |
+
scaled_img = np.swapaxes(scaled_img, 1, 2)
|
38 |
+
scaled_img = np.swapaxes(scaled_img, 1, 0)
|
39 |
+
scaled_img = scaled_img[[2, 1, 0], :, :]
|
40 |
+
scaled_img = scaled_img.astype('float32')
|
41 |
+
scaled_img -= img_mean
|
42 |
+
scaled_img = scaled_img[[2, 1, 0], :, :]
|
43 |
+
x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device)
|
44 |
+
y = self.net(x)
|
45 |
+
|
46 |
+
detections = y.data
|
47 |
+
scale = torch.Tensor([w, h, w, h])
|
48 |
+
|
49 |
+
for i in range(detections.size(1)):
|
50 |
+
j = 0
|
51 |
+
while detections[0, i, j, 0] > conf_th:
|
52 |
+
score = detections[0, i, j, 0]
|
53 |
+
pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
|
54 |
+
bbox = (pt[0], pt[1], pt[2], pt[3], score)
|
55 |
+
bboxes = np.vstack((bboxes, bbox))
|
56 |
+
j += 1
|
57 |
+
|
58 |
+
keep = nms_(bboxes, 0.1)
|
59 |
+
bboxes = bboxes[keep]
|
60 |
+
|
61 |
+
return bboxes
|
eval/detectors/s3fd/box_utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from itertools import product as product
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
|
8 |
+
def nms_(dets, thresh):
|
9 |
+
"""
|
10 |
+
Courtesy of Ross Girshick
|
11 |
+
[https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
|
12 |
+
"""
|
13 |
+
x1 = dets[:, 0]
|
14 |
+
y1 = dets[:, 1]
|
15 |
+
x2 = dets[:, 2]
|
16 |
+
y2 = dets[:, 3]
|
17 |
+
scores = dets[:, 4]
|
18 |
+
|
19 |
+
areas = (x2 - x1) * (y2 - y1)
|
20 |
+
order = scores.argsort()[::-1]
|
21 |
+
|
22 |
+
keep = []
|
23 |
+
while order.size > 0:
|
24 |
+
i = order[0]
|
25 |
+
keep.append(int(i))
|
26 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
27 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
28 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
29 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
30 |
+
|
31 |
+
w = np.maximum(0.0, xx2 - xx1)
|
32 |
+
h = np.maximum(0.0, yy2 - yy1)
|
33 |
+
inter = w * h
|
34 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
35 |
+
|
36 |
+
inds = np.where(ovr <= thresh)[0]
|
37 |
+
order = order[inds + 1]
|
38 |
+
|
39 |
+
return np.array(keep).astype(np.int32)
|
40 |
+
|
41 |
+
|
42 |
+
def decode(loc, priors, variances):
|
43 |
+
"""Decode locations from predictions using priors to undo
|
44 |
+
the encoding we did for offset regression at train time.
|
45 |
+
Args:
|
46 |
+
loc (tensor): location predictions for loc layers,
|
47 |
+
Shape: [num_priors,4]
|
48 |
+
priors (tensor): Prior boxes in center-offset form.
|
49 |
+
Shape: [num_priors,4].
|
50 |
+
variances: (list[float]) Variances of priorboxes
|
51 |
+
Return:
|
52 |
+
decoded bounding box predictions
|
53 |
+
"""
|
54 |
+
|
55 |
+
boxes = torch.cat((
|
56 |
+
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
57 |
+
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
58 |
+
boxes[:, :2] -= boxes[:, 2:] / 2
|
59 |
+
boxes[:, 2:] += boxes[:, :2]
|
60 |
+
return boxes
|
61 |
+
|
62 |
+
|
63 |
+
def nms(boxes, scores, overlap=0.5, top_k=200):
|
64 |
+
"""Apply non-maximum suppression at test time to avoid detecting too many
|
65 |
+
overlapping bounding boxes for a given object.
|
66 |
+
Args:
|
67 |
+
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
|
68 |
+
scores: (tensor) The class predscores for the img, Shape:[num_priors].
|
69 |
+
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
|
70 |
+
top_k: (int) The Maximum number of box preds to consider.
|
71 |
+
Return:
|
72 |
+
The indices of the kept boxes with respect to num_priors.
|
73 |
+
"""
|
74 |
+
|
75 |
+
keep = scores.new(scores.size(0)).zero_().long()
|
76 |
+
if boxes.numel() == 0:
|
77 |
+
return keep, 0
|
78 |
+
x1 = boxes[:, 0]
|
79 |
+
y1 = boxes[:, 1]
|
80 |
+
x2 = boxes[:, 2]
|
81 |
+
y2 = boxes[:, 3]
|
82 |
+
area = torch.mul(x2 - x1, y2 - y1)
|
83 |
+
v, idx = scores.sort(0) # sort in ascending order
|
84 |
+
# I = I[v >= 0.01]
|
85 |
+
idx = idx[-top_k:] # indices of the top-k largest vals
|
86 |
+
xx1 = boxes.new()
|
87 |
+
yy1 = boxes.new()
|
88 |
+
xx2 = boxes.new()
|
89 |
+
yy2 = boxes.new()
|
90 |
+
w = boxes.new()
|
91 |
+
h = boxes.new()
|
92 |
+
|
93 |
+
# keep = torch.Tensor()
|
94 |
+
count = 0
|
95 |
+
while idx.numel() > 0:
|
96 |
+
i = idx[-1] # index of current largest val
|
97 |
+
# keep.append(i)
|
98 |
+
keep[count] = i
|
99 |
+
count += 1
|
100 |
+
if idx.size(0) == 1:
|
101 |
+
break
|
102 |
+
idx = idx[:-1] # remove kept element from view
|
103 |
+
# load bboxes of next highest vals
|
104 |
+
with warnings.catch_warnings():
|
105 |
+
# Ignore UserWarning within this block
|
106 |
+
warnings.simplefilter("ignore", category=UserWarning)
|
107 |
+
torch.index_select(x1, 0, idx, out=xx1)
|
108 |
+
torch.index_select(y1, 0, idx, out=yy1)
|
109 |
+
torch.index_select(x2, 0, idx, out=xx2)
|
110 |
+
torch.index_select(y2, 0, idx, out=yy2)
|
111 |
+
# store element-wise max with next highest score
|
112 |
+
xx1 = torch.clamp(xx1, min=x1[i])
|
113 |
+
yy1 = torch.clamp(yy1, min=y1[i])
|
114 |
+
xx2 = torch.clamp(xx2, max=x2[i])
|
115 |
+
yy2 = torch.clamp(yy2, max=y2[i])
|
116 |
+
w.resize_as_(xx2)
|
117 |
+
h.resize_as_(yy2)
|
118 |
+
w = xx2 - xx1
|
119 |
+
h = yy2 - yy1
|
120 |
+
# check sizes of xx1 and xx2.. after each iteration
|
121 |
+
w = torch.clamp(w, min=0.0)
|
122 |
+
h = torch.clamp(h, min=0.0)
|
123 |
+
inter = w * h
|
124 |
+
# IoU = i / (area(a) + area(b) - i)
|
125 |
+
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
|
126 |
+
union = (rem_areas - inter) + area[i]
|
127 |
+
IoU = inter / union # store result in iou
|
128 |
+
# keep only elements with an IoU <= overlap
|
129 |
+
idx = idx[IoU.le(overlap)]
|
130 |
+
return keep, count
|
131 |
+
|
132 |
+
|
133 |
+
class Detect(object):
|
134 |
+
|
135 |
+
def __init__(self, num_classes=2,
|
136 |
+
top_k=750, nms_thresh=0.3, conf_thresh=0.05,
|
137 |
+
variance=[0.1, 0.2], nms_top_k=5000):
|
138 |
+
|
139 |
+
self.num_classes = num_classes
|
140 |
+
self.top_k = top_k
|
141 |
+
self.nms_thresh = nms_thresh
|
142 |
+
self.conf_thresh = conf_thresh
|
143 |
+
self.variance = variance
|
144 |
+
self.nms_top_k = nms_top_k
|
145 |
+
|
146 |
+
def forward(self, loc_data, conf_data, prior_data):
|
147 |
+
|
148 |
+
num = loc_data.size(0)
|
149 |
+
num_priors = prior_data.size(0)
|
150 |
+
|
151 |
+
conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
|
152 |
+
batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
|
153 |
+
batch_priors = batch_priors.contiguous().view(-1, 4)
|
154 |
+
|
155 |
+
decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
|
156 |
+
decoded_boxes = decoded_boxes.view(num, num_priors, 4)
|
157 |
+
|
158 |
+
output = torch.zeros(num, self.num_classes, self.top_k, 5)
|
159 |
+
|
160 |
+
for i in range(num):
|
161 |
+
boxes = decoded_boxes[i].clone()
|
162 |
+
conf_scores = conf_preds[i].clone()
|
163 |
+
|
164 |
+
for cl in range(1, self.num_classes):
|
165 |
+
c_mask = conf_scores[cl].gt(self.conf_thresh)
|
166 |
+
scores = conf_scores[cl][c_mask]
|
167 |
+
|
168 |
+
if scores.dim() == 0:
|
169 |
+
continue
|
170 |
+
l_mask = c_mask.unsqueeze(1).expand_as(boxes)
|
171 |
+
boxes_ = boxes[l_mask].view(-1, 4)
|
172 |
+
ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
|
173 |
+
count = count if count < self.top_k else self.top_k
|
174 |
+
|
175 |
+
output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
|
176 |
+
|
177 |
+
return output
|
178 |
+
|
179 |
+
|
180 |
+
class PriorBox(object):
|
181 |
+
|
182 |
+
def __init__(self, input_size, feature_maps,
|
183 |
+
variance=[0.1, 0.2],
|
184 |
+
min_sizes=[16, 32, 64, 128, 256, 512],
|
185 |
+
steps=[4, 8, 16, 32, 64, 128],
|
186 |
+
clip=False):
|
187 |
+
|
188 |
+
super(PriorBox, self).__init__()
|
189 |
+
|
190 |
+
self.imh = input_size[0]
|
191 |
+
self.imw = input_size[1]
|
192 |
+
self.feature_maps = feature_maps
|
193 |
+
|
194 |
+
self.variance = variance
|
195 |
+
self.min_sizes = min_sizes
|
196 |
+
self.steps = steps
|
197 |
+
self.clip = clip
|
198 |
+
|
199 |
+
def forward(self):
|
200 |
+
mean = []
|
201 |
+
for k, fmap in enumerate(self.feature_maps):
|
202 |
+
feath = fmap[0]
|
203 |
+
featw = fmap[1]
|
204 |
+
for i, j in product(range(feath), range(featw)):
|
205 |
+
f_kw = self.imw / self.steps[k]
|
206 |
+
f_kh = self.imh / self.steps[k]
|
207 |
+
|
208 |
+
cx = (j + 0.5) / f_kw
|
209 |
+
cy = (i + 0.5) / f_kh
|
210 |
+
|
211 |
+
s_kw = self.min_sizes[k] / self.imw
|
212 |
+
s_kh = self.min_sizes[k] / self.imh
|
213 |
+
|
214 |
+
mean += [cx, cy, s_kw, s_kh]
|
215 |
+
|
216 |
+
output = torch.FloatTensor(mean).view(-1, 4)
|
217 |
+
|
218 |
+
if self.clip:
|
219 |
+
output.clamp_(max=1, min=0)
|
220 |
+
|
221 |
+
return output
|
eval/detectors/s3fd/nets.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.nn.init as init
|
5 |
+
from .box_utils import Detect, PriorBox
|
6 |
+
|
7 |
+
|
8 |
+
class L2Norm(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, n_channels, scale):
|
11 |
+
super(L2Norm, self).__init__()
|
12 |
+
self.n_channels = n_channels
|
13 |
+
self.gamma = scale or None
|
14 |
+
self.eps = 1e-10
|
15 |
+
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
|
16 |
+
self.reset_parameters()
|
17 |
+
|
18 |
+
def reset_parameters(self):
|
19 |
+
init.constant_(self.weight, self.gamma)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
|
23 |
+
x = torch.div(x, norm)
|
24 |
+
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
class S3FDNet(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, device='cuda'):
|
31 |
+
super(S3FDNet, self).__init__()
|
32 |
+
self.device = device
|
33 |
+
|
34 |
+
self.vgg = nn.ModuleList([
|
35 |
+
nn.Conv2d(3, 64, 3, 1, padding=1),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
nn.Conv2d(64, 64, 3, 1, padding=1),
|
38 |
+
nn.ReLU(inplace=True),
|
39 |
+
nn.MaxPool2d(2, 2),
|
40 |
+
|
41 |
+
nn.Conv2d(64, 128, 3, 1, padding=1),
|
42 |
+
nn.ReLU(inplace=True),
|
43 |
+
nn.Conv2d(128, 128, 3, 1, padding=1),
|
44 |
+
nn.ReLU(inplace=True),
|
45 |
+
nn.MaxPool2d(2, 2),
|
46 |
+
|
47 |
+
nn.Conv2d(128, 256, 3, 1, padding=1),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
nn.Conv2d(256, 256, 3, 1, padding=1),
|
50 |
+
nn.ReLU(inplace=True),
|
51 |
+
nn.Conv2d(256, 256, 3, 1, padding=1),
|
52 |
+
nn.ReLU(inplace=True),
|
53 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
54 |
+
|
55 |
+
nn.Conv2d(256, 512, 3, 1, padding=1),
|
56 |
+
nn.ReLU(inplace=True),
|
57 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
58 |
+
nn.ReLU(inplace=True),
|
59 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
60 |
+
nn.ReLU(inplace=True),
|
61 |
+
nn.MaxPool2d(2, 2),
|
62 |
+
|
63 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
64 |
+
nn.ReLU(inplace=True),
|
65 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
66 |
+
nn.ReLU(inplace=True),
|
67 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
68 |
+
nn.ReLU(inplace=True),
|
69 |
+
nn.MaxPool2d(2, 2),
|
70 |
+
|
71 |
+
nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
|
72 |
+
nn.ReLU(inplace=True),
|
73 |
+
nn.Conv2d(1024, 1024, 1, 1),
|
74 |
+
nn.ReLU(inplace=True),
|
75 |
+
])
|
76 |
+
|
77 |
+
self.L2Norm3_3 = L2Norm(256, 10)
|
78 |
+
self.L2Norm4_3 = L2Norm(512, 8)
|
79 |
+
self.L2Norm5_3 = L2Norm(512, 5)
|
80 |
+
|
81 |
+
self.extras = nn.ModuleList([
|
82 |
+
nn.Conv2d(1024, 256, 1, 1),
|
83 |
+
nn.Conv2d(256, 512, 3, 2, padding=1),
|
84 |
+
nn.Conv2d(512, 128, 1, 1),
|
85 |
+
nn.Conv2d(128, 256, 3, 2, padding=1),
|
86 |
+
])
|
87 |
+
|
88 |
+
self.loc = nn.ModuleList([
|
89 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
90 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
91 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
92 |
+
nn.Conv2d(1024, 4, 3, 1, padding=1),
|
93 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
94 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
95 |
+
])
|
96 |
+
|
97 |
+
self.conf = nn.ModuleList([
|
98 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
99 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
100 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
101 |
+
nn.Conv2d(1024, 2, 3, 1, padding=1),
|
102 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
103 |
+
nn.Conv2d(256, 2, 3, 1, padding=1),
|
104 |
+
])
|
105 |
+
|
106 |
+
self.softmax = nn.Softmax(dim=-1)
|
107 |
+
self.detect = Detect()
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
size = x.size()[2:]
|
111 |
+
sources = list()
|
112 |
+
loc = list()
|
113 |
+
conf = list()
|
114 |
+
|
115 |
+
for k in range(16):
|
116 |
+
x = self.vgg[k](x)
|
117 |
+
s = self.L2Norm3_3(x)
|
118 |
+
sources.append(s)
|
119 |
+
|
120 |
+
for k in range(16, 23):
|
121 |
+
x = self.vgg[k](x)
|
122 |
+
s = self.L2Norm4_3(x)
|
123 |
+
sources.append(s)
|
124 |
+
|
125 |
+
for k in range(23, 30):
|
126 |
+
x = self.vgg[k](x)
|
127 |
+
s = self.L2Norm5_3(x)
|
128 |
+
sources.append(s)
|
129 |
+
|
130 |
+
for k in range(30, len(self.vgg)):
|
131 |
+
x = self.vgg[k](x)
|
132 |
+
sources.append(x)
|
133 |
+
|
134 |
+
# apply extra layers and cache source layer outputs
|
135 |
+
for k, v in enumerate(self.extras):
|
136 |
+
x = F.relu(v(x), inplace=True)
|
137 |
+
if k % 2 == 1:
|
138 |
+
sources.append(x)
|
139 |
+
|
140 |
+
# apply multibox head to source layers
|
141 |
+
loc_x = self.loc[0](sources[0])
|
142 |
+
conf_x = self.conf[0](sources[0])
|
143 |
+
|
144 |
+
max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
|
145 |
+
conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
|
146 |
+
|
147 |
+
loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
|
148 |
+
conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
|
149 |
+
|
150 |
+
for i in range(1, len(sources)):
|
151 |
+
x = sources[i]
|
152 |
+
conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
|
153 |
+
loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
|
154 |
+
|
155 |
+
features_maps = []
|
156 |
+
for i in range(len(loc)):
|
157 |
+
feat = []
|
158 |
+
feat += [loc[i].size(1), loc[i].size(2)]
|
159 |
+
features_maps += [feat]
|
160 |
+
|
161 |
+
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
|
162 |
+
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
self.priorbox = PriorBox(size, features_maps)
|
166 |
+
self.priors = self.priorbox.forward()
|
167 |
+
|
168 |
+
output = self.detect.forward(
|
169 |
+
loc.view(loc.size(0), -1, 4),
|
170 |
+
self.softmax(conf.view(conf.size(0), -1, 2)),
|
171 |
+
self.priors.type(type(x.data)).to(self.device)
|
172 |
+
)
|
173 |
+
|
174 |
+
return output
|
eval/draw_syncnet_lines.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
|
18 |
+
|
19 |
+
class Chart:
|
20 |
+
def __init__(self):
|
21 |
+
self.loss_list = []
|
22 |
+
|
23 |
+
def add_ckpt(self, ckpt_path, line_name):
|
24 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
25 |
+
train_step_list = ckpt["train_step_list"]
|
26 |
+
train_loss_list = ckpt["train_loss_list"]
|
27 |
+
val_step_list = ckpt["val_step_list"]
|
28 |
+
val_loss_list = ckpt["val_loss_list"]
|
29 |
+
val_step_list = [val_step_list[0]] + val_step_list[4::5]
|
30 |
+
val_loss_list = [val_loss_list[0]] + val_loss_list[4::5]
|
31 |
+
self.loss_list.append((line_name, train_step_list, train_loss_list, val_step_list, val_loss_list))
|
32 |
+
|
33 |
+
def draw(self, save_path, plot_val=True):
|
34 |
+
# Global settings
|
35 |
+
plt.rcParams["font.size"] = 14
|
36 |
+
plt.rcParams["font.family"] = "serif"
|
37 |
+
plt.rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Lucida Grande"]
|
38 |
+
plt.rcParams["font.serif"] = ["Times New Roman", "DejaVu Serif"]
|
39 |
+
|
40 |
+
# Creating the plot
|
41 |
+
plt.figure(figsize=(7.766, 4.8)) # Golden ratio
|
42 |
+
for loss in self.loss_list:
|
43 |
+
if plot_val:
|
44 |
+
(line,) = plt.plot(loss[1], loss[2], label=loss[0], linewidth=0.5, alpha=0.5)
|
45 |
+
line_color = line.get_color()
|
46 |
+
plt.plot(loss[3], loss[4], linewidth=1.5, color=line_color)
|
47 |
+
else:
|
48 |
+
plt.plot(loss[1], loss[2], label=loss[0], linewidth=1)
|
49 |
+
plt.xlabel("Step")
|
50 |
+
plt.ylabel("Loss")
|
51 |
+
legend = plt.legend()
|
52 |
+
# legend = plt.legend(loc='upper right', bbox_to_anchor=(1, 0.82))
|
53 |
+
|
54 |
+
# Adjust the linewidth of legend
|
55 |
+
for line in legend.get_lines():
|
56 |
+
line.set_linewidth(2)
|
57 |
+
|
58 |
+
plt.savefig(save_path, transparent=True)
|
59 |
+
plt.close()
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
chart = Chart()
|
64 |
+
# chart.add_ckpt("output/syncnet/train-2024_10_25-18:14:43/checkpoints/checkpoint-10000.pt", "w/ self-attn")
|
65 |
+
# chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "w/o self-attn")
|
66 |
+
chart.add_ckpt("output/syncnet/train-2024_10_24-21:03:11/checkpoints/checkpoint-10000.pt", "Dim 512")
|
67 |
+
chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "Dim 2048")
|
68 |
+
chart.add_ckpt("output/syncnet/train-2024_10_24-22:37:04/checkpoints/checkpoint-10000.pt", "Dim 4096")
|
69 |
+
chart.add_ckpt("output/syncnet/train-2024_10_25-02:30:17/checkpoints/checkpoint-10000.pt", "Dim 6144")
|
70 |
+
chart.draw("ablation.pdf", plot_val=True)
|
eval/eval_fvd.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import mediapipe as mp
|
16 |
+
import cv2
|
17 |
+
from decord import VideoReader
|
18 |
+
from einops import rearrange
|
19 |
+
import os
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
import tqdm
|
23 |
+
from eval.fvd import compute_our_fvd
|
24 |
+
|
25 |
+
|
26 |
+
class FVD:
|
27 |
+
def __init__(self, resolution=(224, 224)):
|
28 |
+
self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
|
29 |
+
self.resolution = resolution
|
30 |
+
|
31 |
+
def detect_face(self, image):
|
32 |
+
height, width = image.shape[:2]
|
33 |
+
# Process the image and detect faces.
|
34 |
+
results = self.face_detector.process(image)
|
35 |
+
|
36 |
+
if not results.detections: # Face not detected
|
37 |
+
raise Exception("Face not detected")
|
38 |
+
|
39 |
+
detection = results.detections[0] # Only use the first face in the image
|
40 |
+
bounding_box = detection.location_data.relative_bounding_box
|
41 |
+
xmin = int(bounding_box.xmin * width)
|
42 |
+
ymin = int(bounding_box.ymin * height)
|
43 |
+
face_width = int(bounding_box.width * width)
|
44 |
+
face_height = int(bounding_box.height * height)
|
45 |
+
|
46 |
+
# Crop the image to the bounding box.
|
47 |
+
xmin = max(0, xmin)
|
48 |
+
ymin = max(0, ymin)
|
49 |
+
xmax = min(width, xmin + face_width)
|
50 |
+
ymax = min(height, ymin + face_height)
|
51 |
+
image = image[ymin:ymax, xmin:xmax]
|
52 |
+
|
53 |
+
return image
|
54 |
+
|
55 |
+
def detect_video(self, video_path, real: bool = True):
|
56 |
+
vr = VideoReader(video_path)
|
57 |
+
video_frames = vr[20:36].asnumpy() # Use one frame per second
|
58 |
+
vr.seek(0) # avoid memory leak
|
59 |
+
faces = []
|
60 |
+
for frame in video_frames:
|
61 |
+
face = self.detect_face(frame)
|
62 |
+
face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
|
63 |
+
faces.append(face)
|
64 |
+
|
65 |
+
if len(faces) != 16:
|
66 |
+
return None
|
67 |
+
faces = np.stack(faces, axis=0) # (f, h, w, c)
|
68 |
+
faces = torch.from_numpy(faces)
|
69 |
+
return faces
|
70 |
+
|
71 |
+
|
72 |
+
def eval_fvd(real_videos_dir, fake_videos_dir):
|
73 |
+
fvd = FVD()
|
74 |
+
real_features_list = []
|
75 |
+
fake_features_list = []
|
76 |
+
for file in tqdm.tqdm(os.listdir(fake_videos_dir)):
|
77 |
+
if file.endswith(".mp4"):
|
78 |
+
real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4"))
|
79 |
+
fake_video_path = os.path.join(fake_videos_dir, file)
|
80 |
+
real_features = fvd.detect_video(real_video_path, real=True)
|
81 |
+
fake_features = fvd.detect_video(fake_video_path, real=False)
|
82 |
+
if real_features is None or fake_features is None:
|
83 |
+
continue
|
84 |
+
real_features_list.append(real_features)
|
85 |
+
fake_features_list.append(fake_features)
|
86 |
+
|
87 |
+
real_features = torch.stack(real_features_list) / 255.0
|
88 |
+
fake_features = torch.stack(fake_features_list) / 255.0
|
89 |
+
print(compute_our_fvd(real_features, fake_features, device="cpu"))
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross"
|
94 |
+
fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross"
|
95 |
+
|
96 |
+
eval_fvd(real_videos_dir, fake_videos_dir)
|
eval/eval_sync_conf.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
import tqdm
|
18 |
+
from statistics import fmean
|
19 |
+
from eval.syncnet import SyncNetEval
|
20 |
+
from eval.syncnet_detect import SyncNetDetector
|
21 |
+
from latentsync.utils.util import red_text
|
22 |
+
import torch
|
23 |
+
|
24 |
+
|
25 |
+
def syncnet_eval(syncnet, syncnet_detector, video_path, temp_dir, detect_results_dir="detect_results"):
|
26 |
+
syncnet_detector(video_path=video_path, min_track=50)
|
27 |
+
crop_videos = os.listdir(os.path.join(detect_results_dir, "crop"))
|
28 |
+
if crop_videos == []:
|
29 |
+
raise Exception(red_text(f"Face not detected in {video_path}"))
|
30 |
+
av_offset_list = []
|
31 |
+
conf_list = []
|
32 |
+
for video in crop_videos:
|
33 |
+
av_offset, _, conf = syncnet.evaluate(
|
34 |
+
video_path=os.path.join(detect_results_dir, "crop", video), temp_dir=temp_dir
|
35 |
+
)
|
36 |
+
av_offset_list.append(av_offset)
|
37 |
+
conf_list.append(conf)
|
38 |
+
av_offset = int(fmean(av_offset_list))
|
39 |
+
conf = fmean(conf_list)
|
40 |
+
print(f"Input video: {video_path}\nSyncNet confidence: {conf:.2f}\nAV offset: {av_offset}")
|
41 |
+
return av_offset, conf
|
42 |
+
|
43 |
+
|
44 |
+
def main():
|
45 |
+
parser = argparse.ArgumentParser(description="SyncNet")
|
46 |
+
parser.add_argument("--initial_model", type=str, default="checkpoints/auxiliary/syncnet_v2.model", help="")
|
47 |
+
parser.add_argument("--video_path", type=str, default=None, help="")
|
48 |
+
parser.add_argument("--videos_dir", type=str, default="/root/processed")
|
49 |
+
parser.add_argument("--temp_dir", type=str, default="temp", help="")
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
|
55 |
+
syncnet = SyncNetEval(device=device)
|
56 |
+
syncnet.loadParameters(args.initial_model)
|
57 |
+
|
58 |
+
syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
|
59 |
+
|
60 |
+
if args.video_path is not None:
|
61 |
+
syncnet_eval(syncnet, syncnet_detector, args.video_path, args.temp_dir)
|
62 |
+
else:
|
63 |
+
sync_conf_list = []
|
64 |
+
video_names = sorted([f for f in os.listdir(args.videos_dir) if f.endswith(".mp4")])
|
65 |
+
for video_name in tqdm.tqdm(video_names):
|
66 |
+
try:
|
67 |
+
_, conf = syncnet_eval(
|
68 |
+
syncnet, syncnet_detector, os.path.join(args.videos_dir, video_name), args.temp_dir
|
69 |
+
)
|
70 |
+
sync_conf_list.append(conf)
|
71 |
+
except Exception as e:
|
72 |
+
print(e)
|
73 |
+
print(f"The average sync confidence is {fmean(sync_conf_list):.02f}")
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|
eval/eval_sync_conf.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
python -m eval.eval_sync_conf --video_path "RD_Radio1_000_006_out.mp4"
|
eval/eval_syncnet_acc.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from einops import rearrange
|
20 |
+
from latentsync.models.syncnet import SyncNet
|
21 |
+
from latentsync.data.syncnet_dataset import SyncNetDataset
|
22 |
+
from diffusers import AutoencoderKL
|
23 |
+
from omegaconf import OmegaConf
|
24 |
+
from accelerate.utils import set_seed
|
25 |
+
|
26 |
+
|
27 |
+
def main(config):
|
28 |
+
set_seed(config.run.seed)
|
29 |
+
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
if config.data.latent_space:
|
33 |
+
vae = AutoencoderKL.from_pretrained(
|
34 |
+
"runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
|
35 |
+
)
|
36 |
+
vae.requires_grad_(False)
|
37 |
+
vae.to(device)
|
38 |
+
|
39 |
+
# Dataset and Dataloader setup
|
40 |
+
dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
|
41 |
+
|
42 |
+
test_dataloader = torch.utils.data.DataLoader(
|
43 |
+
dataset,
|
44 |
+
batch_size=config.data.batch_size,
|
45 |
+
shuffle=False,
|
46 |
+
num_workers=config.data.num_workers,
|
47 |
+
drop_last=False,
|
48 |
+
worker_init_fn=dataset.worker_init_fn,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Model
|
52 |
+
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
|
53 |
+
|
54 |
+
print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
|
55 |
+
checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
|
56 |
+
|
57 |
+
syncnet.load_state_dict(checkpoint["state_dict"])
|
58 |
+
syncnet.to(dtype=torch.float16)
|
59 |
+
syncnet.requires_grad_(False)
|
60 |
+
syncnet.eval()
|
61 |
+
|
62 |
+
global_step = 0
|
63 |
+
num_val_batches = config.data.num_val_samples // config.data.batch_size
|
64 |
+
progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
|
65 |
+
|
66 |
+
num_correct_preds = 0
|
67 |
+
num_total_preds = 0
|
68 |
+
|
69 |
+
while True:
|
70 |
+
for step, batch in enumerate(test_dataloader):
|
71 |
+
### >>>> Test >>>> ###
|
72 |
+
|
73 |
+
frames = batch["frames"].to(device, dtype=torch.float16)
|
74 |
+
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
|
75 |
+
y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
|
76 |
+
|
77 |
+
if config.data.latent_space:
|
78 |
+
frames = rearrange(frames, "b f c h w -> (b f) c h w")
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
frames = vae.encode(frames).latent_dist.sample() * 0.18215
|
82 |
+
|
83 |
+
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
|
84 |
+
else:
|
85 |
+
frames = rearrange(frames, "b f c h w -> b (f c) h w")
|
86 |
+
|
87 |
+
if config.data.lower_half:
|
88 |
+
height = frames.shape[2]
|
89 |
+
frames = frames[:, :, height // 2 :, :]
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
|
93 |
+
|
94 |
+
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
|
95 |
+
|
96 |
+
preds = (sims > 0.5).to(dtype=torch.float16)
|
97 |
+
num_correct_preds += (preds == y).sum().item()
|
98 |
+
num_total_preds += len(sims)
|
99 |
+
|
100 |
+
progress_bar.update(1)
|
101 |
+
global_step += 1
|
102 |
+
|
103 |
+
if global_step >= num_val_batches:
|
104 |
+
progress_bar.close()
|
105 |
+
print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
|
106 |
+
return
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
|
111 |
+
|
112 |
+
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
|
113 |
+
args = parser.parse_args()
|
114 |
+
|
115 |
+
# Load a configuration file
|
116 |
+
config = OmegaConf.load(args.config_path)
|
117 |
+
|
118 |
+
main(config)
|
eval/eval_syncnet_acc.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
python -m eval.eval_syncnet_acc --config_path "configs/syncnet/syncnet_16_pixel.yaml"
|
eval/fvd.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
import scipy
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float:
|
10 |
+
mu_gen, sigma_gen = compute_stats(feats_fake)
|
11 |
+
mu_real, sigma_real = compute_stats(feats_real)
|
12 |
+
|
13 |
+
m = np.square(mu_gen - mu_real).sum()
|
14 |
+
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
|
15 |
+
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
|
16 |
+
|
17 |
+
return float(fid)
|
18 |
+
|
19 |
+
|
20 |
+
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
21 |
+
mu = feats.mean(axis=0) # [d]
|
22 |
+
sigma = np.cov(feats, rowvar=False) # [d, d]
|
23 |
+
|
24 |
+
return mu, sigma
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float:
|
29 |
+
i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt"
|
30 |
+
i3d_kwargs = dict(
|
31 |
+
rescale=False, resize=False, return_features=True
|
32 |
+
) # Return raw features before the softmax layer.
|
33 |
+
|
34 |
+
with open(i3d_path, "rb") as f:
|
35 |
+
i3d_model = torch.jit.load(f).eval().to(device)
|
36 |
+
|
37 |
+
videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device)
|
38 |
+
videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device)
|
39 |
+
|
40 |
+
feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy()
|
41 |
+
feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy()
|
42 |
+
|
43 |
+
return compute_fvd(feats_fake, feats_real)
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
# input shape: (b, f, h, w, c)
|
48 |
+
videos_fake = torch.rand(10, 16, 224, 224, 3)
|
49 |
+
videos_real = torch.rand(10, 16, 224, 224, 3)
|
50 |
+
|
51 |
+
our_fvd_result = compute_our_fvd(videos_fake, videos_real)
|
52 |
+
print(f"[FVD scores] Ours: {our_fvd_result}")
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
main()
|
eval/hyper_iqa.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
|
2 |
+
|
3 |
+
import torch as torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import init
|
7 |
+
import math
|
8 |
+
import torch.utils.model_zoo as model_zoo
|
9 |
+
|
10 |
+
model_urls = {
|
11 |
+
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
12 |
+
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
13 |
+
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
14 |
+
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
15 |
+
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class HyperNet(nn.Module):
|
20 |
+
"""
|
21 |
+
Hyper network for learning perceptual rules.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
lda_out_channels: local distortion aware module output size.
|
25 |
+
hyper_in_channels: input feature channels for hyper network.
|
26 |
+
target_in_size: input vector size for target network.
|
27 |
+
target_fc(i)_size: fully connection layer size of target network.
|
28 |
+
feature_size: input feature map width/height for hyper network.
|
29 |
+
|
30 |
+
Note:
|
31 |
+
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
|
32 |
+
|
33 |
+
"""
|
34 |
+
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
|
35 |
+
super(HyperNet, self).__init__()
|
36 |
+
|
37 |
+
self.hyperInChn = hyper_in_channels
|
38 |
+
self.target_in_size = target_in_size
|
39 |
+
self.f1 = target_fc1_size
|
40 |
+
self.f2 = target_fc2_size
|
41 |
+
self.f3 = target_fc3_size
|
42 |
+
self.f4 = target_fc4_size
|
43 |
+
self.feature_size = feature_size
|
44 |
+
|
45 |
+
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
|
46 |
+
|
47 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
48 |
+
|
49 |
+
# Conv layers for resnet output features
|
50 |
+
self.conv1 = nn.Sequential(
|
51 |
+
nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
|
52 |
+
nn.ReLU(inplace=True),
|
53 |
+
nn.Conv2d(1024, 512, 1, padding=(0, 0)),
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
|
56 |
+
nn.ReLU(inplace=True)
|
57 |
+
)
|
58 |
+
|
59 |
+
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases
|
60 |
+
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
|
61 |
+
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
|
62 |
+
|
63 |
+
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
|
64 |
+
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
|
65 |
+
|
66 |
+
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
|
67 |
+
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
|
68 |
+
|
69 |
+
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
|
70 |
+
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
|
71 |
+
|
72 |
+
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
|
73 |
+
self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
|
74 |
+
|
75 |
+
# initialize
|
76 |
+
for i, m_name in enumerate(self._modules):
|
77 |
+
if i > 2:
|
78 |
+
nn.init.kaiming_normal_(self._modules[m_name].weight.data)
|
79 |
+
|
80 |
+
def forward(self, img):
|
81 |
+
feature_size = self.feature_size
|
82 |
+
|
83 |
+
res_out = self.res(img)
|
84 |
+
|
85 |
+
# input vector for target net
|
86 |
+
target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
|
87 |
+
|
88 |
+
# input features for hyper net
|
89 |
+
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
|
90 |
+
|
91 |
+
# generating target net weights & biases
|
92 |
+
target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
|
93 |
+
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
|
94 |
+
|
95 |
+
target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
|
96 |
+
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
|
97 |
+
|
98 |
+
target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
|
99 |
+
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
|
100 |
+
|
101 |
+
target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
|
102 |
+
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
|
103 |
+
|
104 |
+
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
|
105 |
+
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
|
106 |
+
|
107 |
+
out = {}
|
108 |
+
out['target_in_vec'] = target_in_vec
|
109 |
+
out['target_fc1w'] = target_fc1w
|
110 |
+
out['target_fc1b'] = target_fc1b
|
111 |
+
out['target_fc2w'] = target_fc2w
|
112 |
+
out['target_fc2b'] = target_fc2b
|
113 |
+
out['target_fc3w'] = target_fc3w
|
114 |
+
out['target_fc3b'] = target_fc3b
|
115 |
+
out['target_fc4w'] = target_fc4w
|
116 |
+
out['target_fc4b'] = target_fc4b
|
117 |
+
out['target_fc5w'] = target_fc5w
|
118 |
+
out['target_fc5b'] = target_fc5b
|
119 |
+
|
120 |
+
return out
|
121 |
+
|
122 |
+
|
123 |
+
class TargetNet(nn.Module):
|
124 |
+
"""
|
125 |
+
Target network for quality prediction.
|
126 |
+
"""
|
127 |
+
def __init__(self, paras):
|
128 |
+
super(TargetNet, self).__init__()
|
129 |
+
self.l1 = nn.Sequential(
|
130 |
+
TargetFC(paras['target_fc1w'], paras['target_fc1b']),
|
131 |
+
nn.Sigmoid(),
|
132 |
+
)
|
133 |
+
self.l2 = nn.Sequential(
|
134 |
+
TargetFC(paras['target_fc2w'], paras['target_fc2b']),
|
135 |
+
nn.Sigmoid(),
|
136 |
+
)
|
137 |
+
|
138 |
+
self.l3 = nn.Sequential(
|
139 |
+
TargetFC(paras['target_fc3w'], paras['target_fc3b']),
|
140 |
+
nn.Sigmoid(),
|
141 |
+
)
|
142 |
+
|
143 |
+
self.l4 = nn.Sequential(
|
144 |
+
TargetFC(paras['target_fc4w'], paras['target_fc4b']),
|
145 |
+
nn.Sigmoid(),
|
146 |
+
TargetFC(paras['target_fc5w'], paras['target_fc5b']),
|
147 |
+
)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
q = self.l1(x)
|
151 |
+
# q = F.dropout(q)
|
152 |
+
q = self.l2(q)
|
153 |
+
q = self.l3(q)
|
154 |
+
q = self.l4(q).squeeze()
|
155 |
+
return q
|
156 |
+
|
157 |
+
|
158 |
+
class TargetFC(nn.Module):
|
159 |
+
"""
|
160 |
+
Fully connection operations for target net
|
161 |
+
|
162 |
+
Note:
|
163 |
+
Weights & biases are different for different images in a batch,
|
164 |
+
thus here we use group convolution for calculating images in a batch with individual weights & biases.
|
165 |
+
"""
|
166 |
+
def __init__(self, weight, bias):
|
167 |
+
super(TargetFC, self).__init__()
|
168 |
+
self.weight = weight
|
169 |
+
self.bias = bias
|
170 |
+
|
171 |
+
def forward(self, input_):
|
172 |
+
|
173 |
+
input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
|
174 |
+
weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
|
175 |
+
bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
|
176 |
+
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
|
177 |
+
|
178 |
+
return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
|
179 |
+
|
180 |
+
|
181 |
+
class Bottleneck(nn.Module):
|
182 |
+
expansion = 4
|
183 |
+
|
184 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
185 |
+
super(Bottleneck, self).__init__()
|
186 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
187 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
188 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
189 |
+
padding=1, bias=False)
|
190 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
191 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
192 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
193 |
+
self.relu = nn.ReLU(inplace=True)
|
194 |
+
self.downsample = downsample
|
195 |
+
self.stride = stride
|
196 |
+
|
197 |
+
def forward(self, x):
|
198 |
+
residual = x
|
199 |
+
|
200 |
+
out = self.conv1(x)
|
201 |
+
out = self.bn1(out)
|
202 |
+
out = self.relu(out)
|
203 |
+
|
204 |
+
out = self.conv2(out)
|
205 |
+
out = self.bn2(out)
|
206 |
+
out = self.relu(out)
|
207 |
+
|
208 |
+
out = self.conv3(out)
|
209 |
+
out = self.bn3(out)
|
210 |
+
|
211 |
+
if self.downsample is not None:
|
212 |
+
residual = self.downsample(x)
|
213 |
+
|
214 |
+
out += residual
|
215 |
+
out = self.relu(out)
|
216 |
+
|
217 |
+
return out
|
218 |
+
|
219 |
+
|
220 |
+
class ResNetBackbone(nn.Module):
|
221 |
+
|
222 |
+
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
|
223 |
+
super(ResNetBackbone, self).__init__()
|
224 |
+
self.inplanes = 64
|
225 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
226 |
+
self.bn1 = nn.BatchNorm2d(64)
|
227 |
+
self.relu = nn.ReLU(inplace=True)
|
228 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
229 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
230 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
231 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
232 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
233 |
+
|
234 |
+
# local distortion aware module
|
235 |
+
self.lda1_pool = nn.Sequential(
|
236 |
+
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
|
237 |
+
nn.AvgPool2d(7, stride=7),
|
238 |
+
)
|
239 |
+
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
|
240 |
+
|
241 |
+
self.lda2_pool = nn.Sequential(
|
242 |
+
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
|
243 |
+
nn.AvgPool2d(7, stride=7),
|
244 |
+
)
|
245 |
+
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
|
246 |
+
|
247 |
+
self.lda3_pool = nn.Sequential(
|
248 |
+
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
|
249 |
+
nn.AvgPool2d(7, stride=7),
|
250 |
+
)
|
251 |
+
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
|
252 |
+
|
253 |
+
self.lda4_pool = nn.AvgPool2d(7, stride=7)
|
254 |
+
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
|
255 |
+
|
256 |
+
for m in self.modules():
|
257 |
+
if isinstance(m, nn.Conv2d):
|
258 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
259 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
260 |
+
elif isinstance(m, nn.BatchNorm2d):
|
261 |
+
m.weight.data.fill_(1)
|
262 |
+
m.bias.data.zero_()
|
263 |
+
|
264 |
+
# initialize
|
265 |
+
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
|
266 |
+
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
|
267 |
+
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
|
268 |
+
nn.init.kaiming_normal_(self.lda1_fc.weight.data)
|
269 |
+
nn.init.kaiming_normal_(self.lda2_fc.weight.data)
|
270 |
+
nn.init.kaiming_normal_(self.lda3_fc.weight.data)
|
271 |
+
nn.init.kaiming_normal_(self.lda4_fc.weight.data)
|
272 |
+
|
273 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
274 |
+
downsample = None
|
275 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
276 |
+
downsample = nn.Sequential(
|
277 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
278 |
+
kernel_size=1, stride=stride, bias=False),
|
279 |
+
nn.BatchNorm2d(planes * block.expansion),
|
280 |
+
)
|
281 |
+
|
282 |
+
layers = []
|
283 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
284 |
+
self.inplanes = planes * block.expansion
|
285 |
+
for i in range(1, blocks):
|
286 |
+
layers.append(block(self.inplanes, planes))
|
287 |
+
|
288 |
+
return nn.Sequential(*layers)
|
289 |
+
|
290 |
+
def forward(self, x):
|
291 |
+
x = self.conv1(x)
|
292 |
+
x = self.bn1(x)
|
293 |
+
x = self.relu(x)
|
294 |
+
x = self.maxpool(x)
|
295 |
+
x = self.layer1(x)
|
296 |
+
|
297 |
+
# the same effect as lda operation in the paper, but save much more memory
|
298 |
+
lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
|
299 |
+
x = self.layer2(x)
|
300 |
+
lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
|
301 |
+
x = self.layer3(x)
|
302 |
+
lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
|
303 |
+
x = self.layer4(x)
|
304 |
+
lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
|
305 |
+
|
306 |
+
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
|
307 |
+
|
308 |
+
out = {}
|
309 |
+
out['hyper_in_feat'] = x
|
310 |
+
out['target_in_vec'] = vec
|
311 |
+
|
312 |
+
return out
|
313 |
+
|
314 |
+
|
315 |
+
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
|
316 |
+
"""Constructs a ResNet-50 model_hyper.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
|
320 |
+
"""
|
321 |
+
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
|
322 |
+
if pretrained:
|
323 |
+
save_model = model_zoo.load_url(model_urls['resnet50'])
|
324 |
+
model_dict = model.state_dict()
|
325 |
+
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
|
326 |
+
model_dict.update(state_dict)
|
327 |
+
model.load_state_dict(model_dict)
|
328 |
+
else:
|
329 |
+
model.apply(weights_init_xavier)
|
330 |
+
return model
|
331 |
+
|
332 |
+
|
333 |
+
def weights_init_xavier(m):
|
334 |
+
classname = m.__class__.__name__
|
335 |
+
# print(classname)
|
336 |
+
# if isinstance(m, nn.Conv2d):
|
337 |
+
if classname.find('Conv') != -1:
|
338 |
+
init.kaiming_normal_(m.weight.data)
|
339 |
+
elif classname.find('Linear') != -1:
|
340 |
+
init.kaiming_normal_(m.weight.data)
|
341 |
+
elif classname.find('BatchNorm2d') != -1:
|
342 |
+
init.uniform_(m.weight.data, 1.0, 0.02)
|
343 |
+
init.constant_(m.bias.data, 0.0)
|
eval/inference_videos.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
|
20 |
+
def inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path):
|
21 |
+
os.makedirs(output_dir, exist_ok=True)
|
22 |
+
video_names = sorted([f for f in os.listdir(input_dir) if f.endswith(".mp4")])
|
23 |
+
for video_name in tqdm(video_names):
|
24 |
+
video_path = os.path.join(input_dir, video_name)
|
25 |
+
audio_path = os.path.join(input_dir, video_name.replace(".mp4", "_audio.wav"))
|
26 |
+
video_out_path = os.path.join(output_dir, video_name.replace(".mp4", "_out.mp4"))
|
27 |
+
inference_command = f"python inference.py --unet_config_path {unet_config_path} --video_path {video_path} --audio_path {audio_path} --video_out_path {video_out_path} --inference_ckpt_path {ckpt_path} --seed 1247"
|
28 |
+
subprocess.run(inference_command, shell=True)
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/cross"
|
33 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/latentsync_cross"
|
34 |
+
unet_config_path = "configs/unet/unet_latent_16_diffusion.yaml"
|
35 |
+
ckpt_path = "output/unet/train-2024_10_08-16:23:43/checkpoints/checkpoint-1920000.pt"
|
36 |
+
|
37 |
+
inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path)
|
eval/syncnet/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .syncnet_eval import SyncNetEval
|
eval/syncnet/syncnet.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
def save(model, filename):
|
8 |
+
with open(filename, "wb") as f:
|
9 |
+
torch.save(model, f)
|
10 |
+
print("%s saved." % filename)
|
11 |
+
|
12 |
+
|
13 |
+
def load(filename):
|
14 |
+
net = torch.load(filename)
|
15 |
+
return net
|
16 |
+
|
17 |
+
|
18 |
+
class S(nn.Module):
|
19 |
+
def __init__(self, num_layers_in_fc_layers=1024):
|
20 |
+
super(S, self).__init__()
|
21 |
+
|
22 |
+
self.__nFeatures__ = 24
|
23 |
+
self.__nChs__ = 32
|
24 |
+
self.__midChs__ = 32
|
25 |
+
|
26 |
+
self.netcnnaud = nn.Sequential(
|
27 |
+
nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
28 |
+
nn.BatchNorm2d(64),
|
29 |
+
nn.ReLU(inplace=True),
|
30 |
+
nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
|
31 |
+
nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
32 |
+
nn.BatchNorm2d(192),
|
33 |
+
nn.ReLU(inplace=True),
|
34 |
+
nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
|
35 |
+
nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
|
36 |
+
nn.BatchNorm2d(384),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
|
39 |
+
nn.BatchNorm2d(256),
|
40 |
+
nn.ReLU(inplace=True),
|
41 |
+
nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
|
42 |
+
nn.BatchNorm2d(256),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
|
45 |
+
nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
|
46 |
+
nn.BatchNorm2d(512),
|
47 |
+
nn.ReLU(),
|
48 |
+
)
|
49 |
+
|
50 |
+
self.netfcaud = nn.Sequential(
|
51 |
+
nn.Linear(512, 512),
|
52 |
+
nn.BatchNorm1d(512),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.Linear(512, num_layers_in_fc_layers),
|
55 |
+
)
|
56 |
+
|
57 |
+
self.netfclip = nn.Sequential(
|
58 |
+
nn.Linear(512, 512),
|
59 |
+
nn.BatchNorm1d(512),
|
60 |
+
nn.ReLU(),
|
61 |
+
nn.Linear(512, num_layers_in_fc_layers),
|
62 |
+
)
|
63 |
+
|
64 |
+
self.netcnnlip = nn.Sequential(
|
65 |
+
nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
|
66 |
+
nn.BatchNorm3d(96),
|
67 |
+
nn.ReLU(inplace=True),
|
68 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
69 |
+
nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
|
70 |
+
nn.BatchNorm3d(256),
|
71 |
+
nn.ReLU(inplace=True),
|
72 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
|
73 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
74 |
+
nn.BatchNorm3d(256),
|
75 |
+
nn.ReLU(inplace=True),
|
76 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
77 |
+
nn.BatchNorm3d(256),
|
78 |
+
nn.ReLU(inplace=True),
|
79 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
80 |
+
nn.BatchNorm3d(256),
|
81 |
+
nn.ReLU(inplace=True),
|
82 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
83 |
+
nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
|
84 |
+
nn.BatchNorm3d(512),
|
85 |
+
nn.ReLU(inplace=True),
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward_aud(self, x):
|
89 |
+
|
90 |
+
mid = self.netcnnaud(x)
|
91 |
+
# N x ch x 24 x M
|
92 |
+
mid = mid.view((mid.size()[0], -1))
|
93 |
+
# N x (ch x 24)
|
94 |
+
out = self.netfcaud(mid)
|
95 |
+
|
96 |
+
return out
|
97 |
+
|
98 |
+
def forward_lip(self, x):
|
99 |
+
|
100 |
+
mid = self.netcnnlip(x)
|
101 |
+
mid = mid.view((mid.size()[0], -1))
|
102 |
+
# N x (ch x 24)
|
103 |
+
out = self.netfclip(mid)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
def forward_lipfeat(self, x):
|
108 |
+
|
109 |
+
mid = self.netcnnlip(x)
|
110 |
+
out = mid.view((mid.size()[0], -1))
|
111 |
+
# N x (ch x 24)
|
112 |
+
|
113 |
+
return out
|
eval/syncnet/syncnet_eval.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy
|
5 |
+
import time, pdb, argparse, subprocess, os, math, glob
|
6 |
+
import cv2
|
7 |
+
import python_speech_features
|
8 |
+
|
9 |
+
from scipy import signal
|
10 |
+
from scipy.io import wavfile
|
11 |
+
from .syncnet import S
|
12 |
+
from shutil import rmtree
|
13 |
+
|
14 |
+
|
15 |
+
# ==================== Get OFFSET ====================
|
16 |
+
|
17 |
+
# Video 25 FPS, Audio 16000HZ
|
18 |
+
|
19 |
+
|
20 |
+
def calc_pdist(feat1, feat2, vshift=10):
|
21 |
+
win_size = vshift * 2 + 1
|
22 |
+
|
23 |
+
feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
|
24 |
+
|
25 |
+
dists = []
|
26 |
+
|
27 |
+
for i in range(0, len(feat1)):
|
28 |
+
|
29 |
+
dists.append(
|
30 |
+
torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
|
31 |
+
)
|
32 |
+
|
33 |
+
return dists
|
34 |
+
|
35 |
+
|
36 |
+
# ==================== MAIN DEF ====================
|
37 |
+
|
38 |
+
|
39 |
+
class SyncNetEval(torch.nn.Module):
|
40 |
+
def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
|
44 |
+
self.device = device
|
45 |
+
|
46 |
+
def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
|
47 |
+
|
48 |
+
self.__S__.eval()
|
49 |
+
|
50 |
+
# ========== ==========
|
51 |
+
# Convert files
|
52 |
+
# ========== ==========
|
53 |
+
|
54 |
+
if os.path.exists(temp_dir):
|
55 |
+
rmtree(temp_dir)
|
56 |
+
|
57 |
+
os.makedirs(temp_dir)
|
58 |
+
|
59 |
+
# temp_video_path = os.path.join(temp_dir, "temp.mp4")
|
60 |
+
# command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
|
61 |
+
# subprocess.call(command, shell=True)
|
62 |
+
|
63 |
+
command = (
|
64 |
+
f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
|
65 |
+
)
|
66 |
+
subprocess.call(command, shell=True, stdout=None)
|
67 |
+
|
68 |
+
command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
|
69 |
+
subprocess.call(command, shell=True, stdout=None)
|
70 |
+
|
71 |
+
# ========== ==========
|
72 |
+
# Load video
|
73 |
+
# ========== ==========
|
74 |
+
|
75 |
+
images = []
|
76 |
+
|
77 |
+
flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
|
78 |
+
flist.sort()
|
79 |
+
|
80 |
+
for fname in flist:
|
81 |
+
img_input = cv2.imread(fname)
|
82 |
+
img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
|
83 |
+
images.append(img_input)
|
84 |
+
|
85 |
+
im = numpy.stack(images, axis=3)
|
86 |
+
im = numpy.expand_dims(im, axis=0)
|
87 |
+
im = numpy.transpose(im, (0, 3, 4, 1, 2))
|
88 |
+
|
89 |
+
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
|
90 |
+
|
91 |
+
# ========== ==========
|
92 |
+
# Load audio
|
93 |
+
# ========== ==========
|
94 |
+
|
95 |
+
sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
|
96 |
+
mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
|
97 |
+
mfcc = numpy.stack([numpy.array(i) for i in mfcc])
|
98 |
+
|
99 |
+
cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
|
100 |
+
cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
|
101 |
+
|
102 |
+
# ========== ==========
|
103 |
+
# Check audio and video input length
|
104 |
+
# ========== ==========
|
105 |
+
|
106 |
+
# if (float(len(audio)) / 16000) != (float(len(images)) / 25):
|
107 |
+
# print(
|
108 |
+
# "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
|
109 |
+
# % (float(len(audio)) / 16000, float(len(images)) / 25)
|
110 |
+
# )
|
111 |
+
|
112 |
+
min_length = min(len(images), math.floor(len(audio) / 640))
|
113 |
+
|
114 |
+
# ========== ==========
|
115 |
+
# Generate video and audio feats
|
116 |
+
# ========== ==========
|
117 |
+
|
118 |
+
lastframe = min_length - 5
|
119 |
+
im_feat = []
|
120 |
+
cc_feat = []
|
121 |
+
|
122 |
+
tS = time.time()
|
123 |
+
for i in range(0, lastframe, batch_size):
|
124 |
+
|
125 |
+
im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
|
126 |
+
im_in = torch.cat(im_batch, 0)
|
127 |
+
im_out = self.__S__.forward_lip(im_in.to(self.device))
|
128 |
+
im_feat.append(im_out.data.cpu())
|
129 |
+
|
130 |
+
cc_batch = [
|
131 |
+
cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
|
132 |
+
]
|
133 |
+
cc_in = torch.cat(cc_batch, 0)
|
134 |
+
cc_out = self.__S__.forward_aud(cc_in.to(self.device))
|
135 |
+
cc_feat.append(cc_out.data.cpu())
|
136 |
+
|
137 |
+
im_feat = torch.cat(im_feat, 0)
|
138 |
+
cc_feat = torch.cat(cc_feat, 0)
|
139 |
+
|
140 |
+
# ========== ==========
|
141 |
+
# Compute offset
|
142 |
+
# ========== ==========
|
143 |
+
|
144 |
+
dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
|
145 |
+
mean_dists = torch.mean(torch.stack(dists, 1), 1)
|
146 |
+
|
147 |
+
min_dist, minidx = torch.min(mean_dists, 0)
|
148 |
+
|
149 |
+
av_offset = vshift - minidx
|
150 |
+
conf = torch.median(mean_dists) - min_dist
|
151 |
+
|
152 |
+
fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
|
153 |
+
# fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
|
154 |
+
fconf = torch.median(mean_dists).numpy() - fdist
|
155 |
+
framewise_conf = signal.medfilt(fconf, kernel_size=9)
|
156 |
+
|
157 |
+
# numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
|
158 |
+
rmtree(temp_dir)
|
159 |
+
return av_offset.item(), min_dist.item(), conf.item()
|
160 |
+
|
161 |
+
def extract_feature(self, opt, videofile):
|
162 |
+
|
163 |
+
self.__S__.eval()
|
164 |
+
|
165 |
+
# ========== ==========
|
166 |
+
# Load video
|
167 |
+
# ========== ==========
|
168 |
+
cap = cv2.VideoCapture(videofile)
|
169 |
+
|
170 |
+
frame_num = 1
|
171 |
+
images = []
|
172 |
+
while frame_num:
|
173 |
+
frame_num += 1
|
174 |
+
ret, image = cap.read()
|
175 |
+
if ret == 0:
|
176 |
+
break
|
177 |
+
|
178 |
+
images.append(image)
|
179 |
+
|
180 |
+
im = numpy.stack(images, axis=3)
|
181 |
+
im = numpy.expand_dims(im, axis=0)
|
182 |
+
im = numpy.transpose(im, (0, 3, 4, 1, 2))
|
183 |
+
|
184 |
+
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
|
185 |
+
|
186 |
+
# ========== ==========
|
187 |
+
# Generate video feats
|
188 |
+
# ========== ==========
|
189 |
+
|
190 |
+
lastframe = len(images) - 4
|
191 |
+
im_feat = []
|
192 |
+
|
193 |
+
tS = time.time()
|
194 |
+
for i in range(0, lastframe, opt.batch_size):
|
195 |
+
|
196 |
+
im_batch = [
|
197 |
+
imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
|
198 |
+
]
|
199 |
+
im_in = torch.cat(im_batch, 0)
|
200 |
+
im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
|
201 |
+
im_feat.append(im_out.data.cpu())
|
202 |
+
|
203 |
+
im_feat = torch.cat(im_feat, 0)
|
204 |
+
|
205 |
+
# ========== ==========
|
206 |
+
# Compute offset
|
207 |
+
# ========== ==========
|
208 |
+
|
209 |
+
print("Compute time %.3f sec." % (time.time() - tS))
|
210 |
+
|
211 |
+
return im_feat
|
212 |
+
|
213 |
+
def loadParameters(self, path):
|
214 |
+
loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
|
215 |
+
|
216 |
+
self_state = self.__S__.state_dict()
|
217 |
+
|
218 |
+
for name, param in loaded_state.items():
|
219 |
+
|
220 |
+
self_state[name].copy_(param)
|
eval/syncnet_detect.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
|
2 |
+
|
3 |
+
import os, pdb, subprocess, glob, cv2
|
4 |
+
import numpy as np
|
5 |
+
from shutil import rmtree
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from scenedetect.video_manager import VideoManager
|
9 |
+
from scenedetect.scene_manager import SceneManager
|
10 |
+
from scenedetect.stats_manager import StatsManager
|
11 |
+
from scenedetect.detectors import ContentDetector
|
12 |
+
|
13 |
+
from scipy.interpolate import interp1d
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from scipy import signal
|
16 |
+
|
17 |
+
from eval.detectors import S3FD
|
18 |
+
|
19 |
+
|
20 |
+
class SyncNetDetector:
|
21 |
+
def __init__(self, device, detect_results_dir="detect_results"):
|
22 |
+
self.s3f_detector = S3FD(device=device)
|
23 |
+
self.detect_results_dir = detect_results_dir
|
24 |
+
|
25 |
+
def __call__(self, video_path: str, min_track=50, scale=False):
|
26 |
+
crop_dir = os.path.join(self.detect_results_dir, "crop")
|
27 |
+
video_dir = os.path.join(self.detect_results_dir, "video")
|
28 |
+
frames_dir = os.path.join(self.detect_results_dir, "frames")
|
29 |
+
temp_dir = os.path.join(self.detect_results_dir, "temp")
|
30 |
+
|
31 |
+
# ========== DELETE EXISTING DIRECTORIES ==========
|
32 |
+
if os.path.exists(crop_dir):
|
33 |
+
rmtree(crop_dir)
|
34 |
+
|
35 |
+
if os.path.exists(video_dir):
|
36 |
+
rmtree(video_dir)
|
37 |
+
|
38 |
+
if os.path.exists(frames_dir):
|
39 |
+
rmtree(frames_dir)
|
40 |
+
|
41 |
+
if os.path.exists(temp_dir):
|
42 |
+
rmtree(temp_dir)
|
43 |
+
|
44 |
+
# ========== MAKE NEW DIRECTORIES ==========
|
45 |
+
|
46 |
+
os.makedirs(crop_dir)
|
47 |
+
os.makedirs(video_dir)
|
48 |
+
os.makedirs(frames_dir)
|
49 |
+
os.makedirs(temp_dir)
|
50 |
+
|
51 |
+
# ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
|
52 |
+
|
53 |
+
if scale:
|
54 |
+
scaled_video_path = os.path.join(video_dir, "scaled.mp4")
|
55 |
+
command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
|
56 |
+
subprocess.run(command, shell=True)
|
57 |
+
video_path = scaled_video_path
|
58 |
+
|
59 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
|
60 |
+
subprocess.run(command, shell=True, stdout=None)
|
61 |
+
|
62 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
|
63 |
+
subprocess.run(command, shell=True, stdout=None)
|
64 |
+
|
65 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
|
66 |
+
subprocess.run(command, shell=True, stdout=None)
|
67 |
+
|
68 |
+
faces = self.detect_face(frames_dir)
|
69 |
+
|
70 |
+
scene = self.scene_detect(video_dir)
|
71 |
+
|
72 |
+
# Face tracking
|
73 |
+
alltracks = []
|
74 |
+
|
75 |
+
for shot in scene:
|
76 |
+
if shot[1].frame_num - shot[0].frame_num >= min_track:
|
77 |
+
alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
|
78 |
+
|
79 |
+
# Face crop
|
80 |
+
for ii, track in enumerate(alltracks):
|
81 |
+
self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
|
82 |
+
|
83 |
+
rmtree(temp_dir)
|
84 |
+
|
85 |
+
def scene_detect(self, video_dir):
|
86 |
+
video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
|
87 |
+
stats_manager = StatsManager()
|
88 |
+
scene_manager = SceneManager(stats_manager)
|
89 |
+
# Add ContentDetector algorithm (constructor takes detector options like threshold).
|
90 |
+
scene_manager.add_detector(ContentDetector())
|
91 |
+
base_timecode = video_manager.get_base_timecode()
|
92 |
+
|
93 |
+
video_manager.set_downscale_factor()
|
94 |
+
|
95 |
+
video_manager.start()
|
96 |
+
|
97 |
+
scene_manager.detect_scenes(frame_source=video_manager)
|
98 |
+
|
99 |
+
scene_list = scene_manager.get_scene_list(base_timecode)
|
100 |
+
|
101 |
+
if scene_list == []:
|
102 |
+
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
|
103 |
+
|
104 |
+
return scene_list
|
105 |
+
|
106 |
+
def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
|
107 |
+
|
108 |
+
iouThres = 0.5 # Minimum IOU between consecutive face detections
|
109 |
+
tracks = []
|
110 |
+
|
111 |
+
while True:
|
112 |
+
track = []
|
113 |
+
for framefaces in scenefaces:
|
114 |
+
for face in framefaces:
|
115 |
+
if track == []:
|
116 |
+
track.append(face)
|
117 |
+
framefaces.remove(face)
|
118 |
+
elif face["frame"] - track[-1]["frame"] <= num_failed_det:
|
119 |
+
iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
|
120 |
+
if iou > iouThres:
|
121 |
+
track.append(face)
|
122 |
+
framefaces.remove(face)
|
123 |
+
continue
|
124 |
+
else:
|
125 |
+
break
|
126 |
+
|
127 |
+
if track == []:
|
128 |
+
break
|
129 |
+
elif len(track) > min_track:
|
130 |
+
|
131 |
+
framenum = np.array([f["frame"] for f in track])
|
132 |
+
bboxes = np.array([np.array(f["bbox"]) for f in track])
|
133 |
+
|
134 |
+
frame_i = np.arange(framenum[0], framenum[-1] + 1)
|
135 |
+
|
136 |
+
bboxes_i = []
|
137 |
+
for ij in range(0, 4):
|
138 |
+
interpfn = interp1d(framenum, bboxes[:, ij])
|
139 |
+
bboxes_i.append(interpfn(frame_i))
|
140 |
+
bboxes_i = np.stack(bboxes_i, axis=1)
|
141 |
+
|
142 |
+
if (
|
143 |
+
max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
|
144 |
+
> min_face_size
|
145 |
+
):
|
146 |
+
tracks.append({"frame": frame_i, "bbox": bboxes_i})
|
147 |
+
|
148 |
+
return tracks
|
149 |
+
|
150 |
+
def detect_face(self, frames_dir, facedet_scale=0.25):
|
151 |
+
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
|
152 |
+
flist.sort()
|
153 |
+
|
154 |
+
dets = []
|
155 |
+
|
156 |
+
for fidx, fname in enumerate(flist):
|
157 |
+
image = cv2.imread(fname)
|
158 |
+
|
159 |
+
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
160 |
+
bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
|
161 |
+
|
162 |
+
dets.append([])
|
163 |
+
for bbox in bboxes:
|
164 |
+
dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
|
165 |
+
|
166 |
+
return dets
|
167 |
+
|
168 |
+
def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
|
169 |
+
|
170 |
+
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
|
171 |
+
flist.sort()
|
172 |
+
|
173 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
174 |
+
vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
|
175 |
+
|
176 |
+
dets = {"x": [], "y": [], "s": []}
|
177 |
+
|
178 |
+
for det in track["bbox"]:
|
179 |
+
|
180 |
+
dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
|
181 |
+
dets["y"].append((det[1] + det[3]) / 2) # crop center x
|
182 |
+
dets["x"].append((det[0] + det[2]) / 2) # crop center y
|
183 |
+
|
184 |
+
# Smooth detections
|
185 |
+
dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
|
186 |
+
dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
|
187 |
+
dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
|
188 |
+
|
189 |
+
for fidx, frame in enumerate(track["frame"]):
|
190 |
+
|
191 |
+
cs = crop_scale
|
192 |
+
|
193 |
+
bs = dets["s"][fidx] # Detection box size
|
194 |
+
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
|
195 |
+
|
196 |
+
image = cv2.imread(flist[frame])
|
197 |
+
|
198 |
+
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
|
199 |
+
my = dets["y"][fidx] + bsi # BBox center Y
|
200 |
+
mx = dets["x"][fidx] + bsi # BBox center X
|
201 |
+
|
202 |
+
face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
|
203 |
+
|
204 |
+
vOut.write(cv2.resize(face, (224, 224)))
|
205 |
+
|
206 |
+
audiotmp = os.path.join(temp_dir, "audio.wav")
|
207 |
+
audiostart = (track["frame"][0]) / frame_rate
|
208 |
+
audioend = (track["frame"][-1] + 1) / frame_rate
|
209 |
+
|
210 |
+
vOut.release()
|
211 |
+
|
212 |
+
# ========== CROP AUDIO FILE ==========
|
213 |
+
|
214 |
+
command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
|
215 |
+
os.path.join(video_dir, "audio.wav"),
|
216 |
+
audiostart,
|
217 |
+
audioend,
|
218 |
+
audiotmp,
|
219 |
+
)
|
220 |
+
output = subprocess.run(command, shell=True, stdout=None)
|
221 |
+
|
222 |
+
sample_rate, audio = wavfile.read(audiotmp)
|
223 |
+
|
224 |
+
# ========== COMBINE AUDIO AND VIDEO FILES ==========
|
225 |
+
|
226 |
+
command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
|
227 |
+
cropfile,
|
228 |
+
audiotmp,
|
229 |
+
cropfile,
|
230 |
+
)
|
231 |
+
output = subprocess.run(command, shell=True, stdout=None)
|
232 |
+
|
233 |
+
os.remove(cropfile + "t.mp4")
|
234 |
+
|
235 |
+
return {"track": track, "proc_track": dets}
|
236 |
+
|
237 |
+
|
238 |
+
def bounding_box_iou(boxA, boxB):
|
239 |
+
xA = max(boxA[0], boxB[0])
|
240 |
+
yA = max(boxA[1], boxB[1])
|
241 |
+
xB = min(boxA[2], boxB[2])
|
242 |
+
yB = min(boxA[3], boxB[3])
|
243 |
+
|
244 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
245 |
+
|
246 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
247 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
248 |
+
|
249 |
+
iou = interArea / float(boxAArea + boxBArea - interArea)
|
250 |
+
|
251 |
+
return iou
|
inference.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
python -m scripts.inference \
|
4 |
+
--unet_config_path "configs/unet/second_stage.yaml" \
|
5 |
+
--inference_ckpt_path "checkpoints/latentsync_unet.pt" \
|
6 |
+
--guidance_scale 1.0 \
|
7 |
+
--video_path "assets/demo1_video.mp4" \
|
8 |
+
--audio_path "assets/demo1_audio.wav" \
|
9 |
+
--video_out_path "video_out.mp4"
|
pipelines/lipsync_pipeline.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
from typing import Callable, List, Optional, Union
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torchvision
|
12 |
+
|
13 |
+
from diffusers.utils import is_accelerate_available
|
14 |
+
from packaging import version
|
15 |
+
|
16 |
+
from diffusers.configuration_utils import FrozenDict
|
17 |
+
from diffusers.models import AutoencoderKL
|
18 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
19 |
+
from diffusers.schedulers import (
|
20 |
+
DDIMScheduler,
|
21 |
+
DPMSolverMultistepScheduler,
|
22 |
+
EulerAncestralDiscreteScheduler,
|
23 |
+
EulerDiscreteScheduler,
|
24 |
+
LMSDiscreteScheduler,
|
25 |
+
PNDMScheduler,
|
26 |
+
)
|
27 |
+
from diffusers.utils import deprecate, logging
|
28 |
+
|
29 |
+
from einops import rearrange
|
30 |
+
|
31 |
+
from ..models.unet import UNet3DConditionModel
|
32 |
+
from ..utils.image_processor import ImageProcessor
|
33 |
+
from ..utils.util import read_video, read_audio, write_video
|
34 |
+
from ..whisper.audio2feature import Audio2Feature
|
35 |
+
import tqdm
|
36 |
+
import soundfile as sf
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
|
41 |
+
class LipsyncPipeline(DiffusionPipeline):
|
42 |
+
_optional_components = []
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
vae: AutoencoderKL,
|
47 |
+
audio_encoder: Audio2Feature,
|
48 |
+
unet: UNet3DConditionModel,
|
49 |
+
scheduler: Union[
|
50 |
+
DDIMScheduler,
|
51 |
+
PNDMScheduler,
|
52 |
+
LMSDiscreteScheduler,
|
53 |
+
EulerDiscreteScheduler,
|
54 |
+
EulerAncestralDiscreteScheduler,
|
55 |
+
DPMSolverMultistepScheduler,
|
56 |
+
],
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
61 |
+
deprecation_message = (
|
62 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
63 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
64 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
65 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
66 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
67 |
+
" file"
|
68 |
+
)
|
69 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
70 |
+
new_config = dict(scheduler.config)
|
71 |
+
new_config["steps_offset"] = 1
|
72 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
73 |
+
|
74 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
75 |
+
deprecation_message = (
|
76 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
77 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
78 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
79 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
80 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
81 |
+
)
|
82 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
83 |
+
new_config = dict(scheduler.config)
|
84 |
+
new_config["clip_sample"] = False
|
85 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
86 |
+
|
87 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
88 |
+
version.parse(unet.config._diffusers_version).base_version
|
89 |
+
) < version.parse("0.9.0.dev0")
|
90 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
91 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
92 |
+
deprecation_message = (
|
93 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
94 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
95 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
96 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
97 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
98 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
99 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
100 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
101 |
+
" the `unet/config.json` file"
|
102 |
+
)
|
103 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
104 |
+
new_config = dict(unet.config)
|
105 |
+
new_config["sample_size"] = 64
|
106 |
+
unet._internal_dict = FrozenDict(new_config)
|
107 |
+
|
108 |
+
self.register_modules(
|
109 |
+
vae=vae,
|
110 |
+
audio_encoder=audio_encoder,
|
111 |
+
unet=unet,
|
112 |
+
scheduler=scheduler,
|
113 |
+
)
|
114 |
+
|
115 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
116 |
+
|
117 |
+
self.set_progress_bar_config(desc="Steps")
|
118 |
+
|
119 |
+
def enable_vae_slicing(self):
|
120 |
+
self.vae.enable_slicing()
|
121 |
+
|
122 |
+
def disable_vae_slicing(self):
|
123 |
+
self.vae.disable_slicing()
|
124 |
+
|
125 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
126 |
+
if is_accelerate_available():
|
127 |
+
from accelerate import cpu_offload
|
128 |
+
else:
|
129 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
130 |
+
|
131 |
+
device = torch.device(f"cuda:{gpu_id}")
|
132 |
+
|
133 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
134 |
+
if cpu_offloaded_model is not None:
|
135 |
+
cpu_offload(cpu_offloaded_model, device)
|
136 |
+
|
137 |
+
@property
|
138 |
+
def _execution_device(self):
|
139 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
140 |
+
return self.device
|
141 |
+
for module in self.unet.modules():
|
142 |
+
if (
|
143 |
+
hasattr(module, "_hf_hook")
|
144 |
+
and hasattr(module._hf_hook, "execution_device")
|
145 |
+
and module._hf_hook.execution_device is not None
|
146 |
+
):
|
147 |
+
return torch.device(module._hf_hook.execution_device)
|
148 |
+
return self.device
|
149 |
+
|
150 |
+
def decode_latents(self, latents):
|
151 |
+
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
|
152 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
153 |
+
decoded_latents = self.vae.decode(latents).sample
|
154 |
+
return decoded_latents
|
155 |
+
|
156 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
157 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
158 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
159 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
160 |
+
# and should be between [0, 1]
|
161 |
+
|
162 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
163 |
+
extra_step_kwargs = {}
|
164 |
+
if accepts_eta:
|
165 |
+
extra_step_kwargs["eta"] = eta
|
166 |
+
|
167 |
+
# check if the scheduler accepts generator
|
168 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
169 |
+
if accepts_generator:
|
170 |
+
extra_step_kwargs["generator"] = generator
|
171 |
+
return extra_step_kwargs
|
172 |
+
|
173 |
+
def check_inputs(self, height, width, callback_steps):
|
174 |
+
assert height == width, "Height and width must be equal"
|
175 |
+
|
176 |
+
if height % 8 != 0 or width % 8 != 0:
|
177 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
178 |
+
|
179 |
+
if (callback_steps is None) or (
|
180 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
181 |
+
):
|
182 |
+
raise ValueError(
|
183 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
184 |
+
f" {type(callback_steps)}."
|
185 |
+
)
|
186 |
+
|
187 |
+
def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
|
188 |
+
shape = (
|
189 |
+
batch_size,
|
190 |
+
num_channels_latents,
|
191 |
+
1,
|
192 |
+
height // self.vae_scale_factor,
|
193 |
+
width // self.vae_scale_factor,
|
194 |
+
)
|
195 |
+
rand_device = "cpu" if device.type == "mps" else device
|
196 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
197 |
+
latents = latents.repeat(1, 1, num_frames, 1, 1)
|
198 |
+
|
199 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
200 |
+
latents = latents * self.scheduler.init_noise_sigma
|
201 |
+
return latents
|
202 |
+
|
203 |
+
def prepare_mask_latents(
|
204 |
+
self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
|
205 |
+
):
|
206 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
207 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
208 |
+
# and half precision
|
209 |
+
mask = torch.nn.functional.interpolate(
|
210 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
211 |
+
)
|
212 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
213 |
+
|
214 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
215 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
216 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
217 |
+
|
218 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
219 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
220 |
+
mask = mask.to(device=device, dtype=dtype)
|
221 |
+
|
222 |
+
# assume batch size = 1
|
223 |
+
mask = rearrange(mask, "f c h w -> 1 c f h w")
|
224 |
+
masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
|
225 |
+
|
226 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
227 |
+
masked_image_latents = (
|
228 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
229 |
+
)
|
230 |
+
return mask, masked_image_latents
|
231 |
+
|
232 |
+
def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
|
233 |
+
images = images.to(device=device, dtype=dtype)
|
234 |
+
image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
|
235 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
236 |
+
image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
|
237 |
+
image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
|
238 |
+
|
239 |
+
return image_latents
|
240 |
+
|
241 |
+
def set_progress_bar_config(self, **kwargs):
|
242 |
+
if not hasattr(self, "_progress_bar_config"):
|
243 |
+
self._progress_bar_config = {}
|
244 |
+
self._progress_bar_config.update(kwargs)
|
245 |
+
|
246 |
+
@staticmethod
|
247 |
+
def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
|
248 |
+
# Paste the surrounding pixels back, because we only want to change the mouth region
|
249 |
+
pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
|
250 |
+
masks = masks.to(device=device, dtype=weight_dtype)
|
251 |
+
combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
|
252 |
+
return combined_pixel_values
|
253 |
+
|
254 |
+
@staticmethod
|
255 |
+
def pixel_values_to_images(pixel_values: torch.Tensor):
|
256 |
+
pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
|
257 |
+
pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
|
258 |
+
images = (pixel_values * 255).to(torch.uint8)
|
259 |
+
images = images.cpu().numpy()
|
260 |
+
return images
|
261 |
+
|
262 |
+
def affine_transform_video(self, video_path):
|
263 |
+
video_frames = read_video(video_path, use_decord=False)
|
264 |
+
faces = []
|
265 |
+
boxes = []
|
266 |
+
affine_matrices = []
|
267 |
+
print(f"Affine transforming {len(video_frames)} faces...")
|
268 |
+
for frame in tqdm.tqdm(video_frames):
|
269 |
+
face, box, affine_matrix = self.image_processor.affine_transform(frame)
|
270 |
+
faces.append(face)
|
271 |
+
boxes.append(box)
|
272 |
+
affine_matrices.append(affine_matrix)
|
273 |
+
|
274 |
+
faces = torch.stack(faces)
|
275 |
+
return faces, video_frames, boxes, affine_matrices
|
276 |
+
|
277 |
+
def restore_video(self, faces, video_frames, boxes, affine_matrices):
|
278 |
+
video_frames = video_frames[: faces.shape[0]]
|
279 |
+
out_frames = []
|
280 |
+
for index, face in enumerate(faces):
|
281 |
+
x1, y1, x2, y2 = boxes[index]
|
282 |
+
height = int(y2 - y1)
|
283 |
+
width = int(x2 - x1)
|
284 |
+
face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True)
|
285 |
+
face = rearrange(face, "c h w -> h w c")
|
286 |
+
face = (face / 2 + 0.5).clamp(0, 1)
|
287 |
+
face = (face * 255).to(torch.uint8).cpu().numpy()
|
288 |
+
out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
|
289 |
+
out_frames.append(out_frame)
|
290 |
+
return np.stack(out_frames, axis=0)
|
291 |
+
|
292 |
+
@torch.no_grad()
|
293 |
+
def __call__(
|
294 |
+
self,
|
295 |
+
video_path: str,
|
296 |
+
audio_path: str,
|
297 |
+
video_out_path: str,
|
298 |
+
video_mask_path: str = None,
|
299 |
+
num_frames: int = 16,
|
300 |
+
video_fps: int = 25,
|
301 |
+
audio_sample_rate: int = 16000,
|
302 |
+
height: Optional[int] = None,
|
303 |
+
width: Optional[int] = None,
|
304 |
+
num_inference_steps: int = 20,
|
305 |
+
guidance_scale: float = 1.5,
|
306 |
+
weight_dtype: Optional[torch.dtype] = torch.float16,
|
307 |
+
eta: float = 0.0,
|
308 |
+
mask: str = "fix_mask",
|
309 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
310 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
311 |
+
callback_steps: Optional[int] = 1,
|
312 |
+
**kwargs,
|
313 |
+
):
|
314 |
+
is_train = self.unet.training
|
315 |
+
self.unet.eval()
|
316 |
+
|
317 |
+
# 0. Define call parameters
|
318 |
+
batch_size = 1
|
319 |
+
device = self._execution_device
|
320 |
+
self.image_processor = ImageProcessor(height, mask=mask, device="cuda")
|
321 |
+
self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
|
322 |
+
|
323 |
+
video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path)
|
324 |
+
audio_samples = read_audio(audio_path)
|
325 |
+
|
326 |
+
# 1. Default height and width to unet
|
327 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
328 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
329 |
+
|
330 |
+
# 2. Check inputs
|
331 |
+
self.check_inputs(height, width, callback_steps)
|
332 |
+
|
333 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
334 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
335 |
+
# corresponds to doing no classifier free guidance.
|
336 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
337 |
+
|
338 |
+
# 3. set timesteps
|
339 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
340 |
+
timesteps = self.scheduler.timesteps
|
341 |
+
|
342 |
+
# 4. Prepare extra step kwargs.
|
343 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
344 |
+
|
345 |
+
self.video_fps = video_fps
|
346 |
+
|
347 |
+
if self.unet.add_audio_layer:
|
348 |
+
whisper_feature = self.audio_encoder.audio2feat(audio_path)
|
349 |
+
whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
|
350 |
+
|
351 |
+
num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames
|
352 |
+
else:
|
353 |
+
num_inferences = len(video_frames) // num_frames
|
354 |
+
|
355 |
+
synced_video_frames = []
|
356 |
+
masked_video_frames = []
|
357 |
+
|
358 |
+
num_channels_latents = self.vae.config.latent_channels
|
359 |
+
|
360 |
+
# Prepare latent variables
|
361 |
+
all_latents = self.prepare_latents(
|
362 |
+
batch_size,
|
363 |
+
num_frames * num_inferences,
|
364 |
+
num_channels_latents,
|
365 |
+
height,
|
366 |
+
width,
|
367 |
+
weight_dtype,
|
368 |
+
device,
|
369 |
+
generator,
|
370 |
+
)
|
371 |
+
|
372 |
+
for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
|
373 |
+
if self.unet.add_audio_layer:
|
374 |
+
audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
|
375 |
+
audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
|
376 |
+
if do_classifier_free_guidance:
|
377 |
+
empty_audio_embeds = torch.zeros_like(audio_embeds)
|
378 |
+
audio_embeds = torch.cat([empty_audio_embeds, audio_embeds])
|
379 |
+
else:
|
380 |
+
audio_embeds = None
|
381 |
+
inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames]
|
382 |
+
latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
|
383 |
+
pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
|
384 |
+
inference_video_frames, affine_transform=False
|
385 |
+
)
|
386 |
+
|
387 |
+
# 7. Prepare mask latent variables
|
388 |
+
mask_latents, masked_image_latents = self.prepare_mask_latents(
|
389 |
+
masks,
|
390 |
+
masked_pixel_values,
|
391 |
+
height,
|
392 |
+
width,
|
393 |
+
weight_dtype,
|
394 |
+
device,
|
395 |
+
generator,
|
396 |
+
do_classifier_free_guidance,
|
397 |
+
)
|
398 |
+
|
399 |
+
# 8. Prepare image latents
|
400 |
+
image_latents = self.prepare_image_latents(
|
401 |
+
pixel_values,
|
402 |
+
device,
|
403 |
+
weight_dtype,
|
404 |
+
generator,
|
405 |
+
do_classifier_free_guidance,
|
406 |
+
)
|
407 |
+
|
408 |
+
# 9. Denoising loop
|
409 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
410 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
411 |
+
for j, t in enumerate(timesteps):
|
412 |
+
# expand the latents if we are doing classifier free guidance
|
413 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
414 |
+
|
415 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
416 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
417 |
+
latent_model_input = torch.cat(
|
418 |
+
[latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1
|
419 |
+
)
|
420 |
+
|
421 |
+
# predict the noise residual
|
422 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample
|
423 |
+
|
424 |
+
# perform guidance
|
425 |
+
if do_classifier_free_guidance:
|
426 |
+
noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
|
427 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
|
428 |
+
|
429 |
+
# compute the previous noisy sample x_t -> x_t-1
|
430 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
431 |
+
|
432 |
+
# call the callback, if provided
|
433 |
+
if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
|
434 |
+
progress_bar.update()
|
435 |
+
if callback is not None and j % callback_steps == 0:
|
436 |
+
callback(j, t, latents)
|
437 |
+
|
438 |
+
# Recover the pixel values
|
439 |
+
decoded_latents = self.decode_latents(latents)
|
440 |
+
decoded_latents = self.paste_surrounding_pixels_back(
|
441 |
+
decoded_latents, pixel_values, 1 - masks, device, weight_dtype
|
442 |
+
)
|
443 |
+
synced_video_frames.append(decoded_latents)
|
444 |
+
masked_video_frames.append(masked_pixel_values)
|
445 |
+
|
446 |
+
synced_video_frames = self.restore_video(
|
447 |
+
torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices
|
448 |
+
)
|
449 |
+
masked_video_frames = self.restore_video(
|
450 |
+
torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices
|
451 |
+
)
|
452 |
+
|
453 |
+
audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
|
454 |
+
audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
|
455 |
+
|
456 |
+
if is_train:
|
457 |
+
self.unet.train()
|
458 |
+
|
459 |
+
temp_dir = "temp"
|
460 |
+
if os.path.exists(temp_dir):
|
461 |
+
shutil.rmtree(temp_dir)
|
462 |
+
os.makedirs(temp_dir, exist_ok=True)
|
463 |
+
|
464 |
+
write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
|
465 |
+
# write_video(video_mask_path, masked_video_frames, fps=25)
|
466 |
+
|
467 |
+
sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
|
468 |
+
|
469 |
+
command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
|
470 |
+
subprocess.run(command, shell=True)
|
predict.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prediction interface for Cog ⚙️
|
2 |
+
# https://cog.run/python
|
3 |
+
|
4 |
+
from cog import BasePredictor, Input, Path
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
MODEL_CACHE = "checkpoints"
|
10 |
+
MODEL_URL = "https://weights.replicate.delivery/default/chunyu-li/LatentSync/model.tar"
|
11 |
+
|
12 |
+
def download_weights(url, dest):
|
13 |
+
start = time.time()
|
14 |
+
print("downloading url: ", url)
|
15 |
+
print("downloading to: ", dest)
|
16 |
+
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
|
17 |
+
print("downloading took: ", time.time() - start)
|
18 |
+
|
19 |
+
class Predictor(BasePredictor):
|
20 |
+
def setup(self) -> None:
|
21 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
22 |
+
# Download the model weights
|
23 |
+
if not os.path.exists(MODEL_CACHE):
|
24 |
+
download_weights(MODEL_URL, MODEL_CACHE)
|
25 |
+
|
26 |
+
# Soft links for the auxiliary models
|
27 |
+
os.system("mkdir -p ~/.cache/torch/hub/checkpoints")
|
28 |
+
os.system("ln -s $(pwd)/checkpoints/auxiliary/2DFAN4-cd938726ad.zip ~/.cache/torch/hub/checkpoints/2DFAN4-cd938726ad.zip")
|
29 |
+
os.system("ln -s $(pwd)/checkpoints/auxiliary/s3fd-619a316812.pth ~/.cache/torch/hub/checkpoints/s3fd-619a316812.pth")
|
30 |
+
os.system("ln -s $(pwd)/checkpoints/auxiliary/vgg16-397923af.pth ~/.cache/torch/hub/checkpoints/vgg16-397923af.pth")
|
31 |
+
|
32 |
+
def predict(
|
33 |
+
self,
|
34 |
+
video: Path = Input(
|
35 |
+
description="Input video", default=None
|
36 |
+
),
|
37 |
+
audio: Path = Input(
|
38 |
+
description="Input audio to ", default=None
|
39 |
+
),
|
40 |
+
guidance_scale: float = Input(
|
41 |
+
description="Guidance scale", ge=0, le=10, default=1.0
|
42 |
+
),
|
43 |
+
seed: int = Input(
|
44 |
+
description="Set to 0 for Random seed", default=0
|
45 |
+
)
|
46 |
+
) -> Path:
|
47 |
+
"""Run a single prediction on the model"""
|
48 |
+
if seed <= 0:
|
49 |
+
seed = int.from_bytes(os.urandom(2), "big")
|
50 |
+
print(f"Using seed: {seed}")
|
51 |
+
|
52 |
+
video_path = str(video)
|
53 |
+
audio_path = str(audio)
|
54 |
+
config_path = "configs/unet/second_stage.yaml"
|
55 |
+
ckpt_path = "checkpoints/latentsync_unet.pt"
|
56 |
+
output_path = "/tmp/video_out.mp4"
|
57 |
+
|
58 |
+
# Run the following command:
|
59 |
+
os.system(f"python -m scripts.inference --unet_config_path {config_path} --inference_ckpt_path {ckpt_path} --guidance_scale {str(guidance_scale)} --video_path {video_path} --audio_path {audio_path} --video_out_path {output_path} --seed {seed}")
|
60 |
+
return Path(output_path)
|
preprocess/affine_transform.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from latentsync.utils.util import read_video, write_video
|
16 |
+
from latentsync.utils.image_processor import ImageProcessor
|
17 |
+
import torch
|
18 |
+
from einops import rearrange
|
19 |
+
import os
|
20 |
+
import tqdm
|
21 |
+
import subprocess
|
22 |
+
from multiprocessing import Process
|
23 |
+
import shutil
|
24 |
+
|
25 |
+
paths = []
|
26 |
+
|
27 |
+
|
28 |
+
def gather_video_paths(input_dir, output_dir):
|
29 |
+
for video in sorted(os.listdir(input_dir)):
|
30 |
+
if video.endswith(".mp4"):
|
31 |
+
video_input = os.path.join(input_dir, video)
|
32 |
+
video_output = os.path.join(output_dir, video)
|
33 |
+
if os.path.isfile(video_output):
|
34 |
+
continue
|
35 |
+
paths.append((video_input, video_output))
|
36 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
37 |
+
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
38 |
+
|
39 |
+
|
40 |
+
class FaceDetector:
|
41 |
+
def __init__(self, resolution: int = 512, device: str = "cpu"):
|
42 |
+
self.image_processor = ImageProcessor(resolution, "fix_mask", device)
|
43 |
+
|
44 |
+
def affine_transform_video(self, video_path):
|
45 |
+
video_frames = read_video(video_path, change_fps=False)
|
46 |
+
results = []
|
47 |
+
for frame in video_frames:
|
48 |
+
frame, _, _ = self.image_processor.affine_transform(frame)
|
49 |
+
results.append(frame)
|
50 |
+
results = torch.stack(results)
|
51 |
+
|
52 |
+
results = rearrange(results, "f c h w -> f h w c").numpy()
|
53 |
+
return results
|
54 |
+
|
55 |
+
def close(self):
|
56 |
+
self.image_processor.close()
|
57 |
+
|
58 |
+
|
59 |
+
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir):
|
60 |
+
video_name = os.path.basename(video_input_path)[:-4]
|
61 |
+
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav")
|
62 |
+
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4")
|
63 |
+
|
64 |
+
write_video(video_temp, video_frames, fps=25)
|
65 |
+
|
66 |
+
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}"
|
67 |
+
subprocess.run(command, shell=True)
|
68 |
+
|
69 |
+
os.makedirs(os.path.dirname(video_output_path), exist_ok=True)
|
70 |
+
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}"
|
71 |
+
subprocess.run(command, shell=True)
|
72 |
+
|
73 |
+
os.remove(audio_temp)
|
74 |
+
os.remove(video_temp)
|
75 |
+
|
76 |
+
|
77 |
+
def func(paths, process_temp_dir, device_id, resolution):
|
78 |
+
os.makedirs(process_temp_dir, exist_ok=True)
|
79 |
+
face_detector = FaceDetector(resolution, f"cuda:{device_id}")
|
80 |
+
|
81 |
+
for video_input, video_output in paths:
|
82 |
+
if os.path.isfile(video_output):
|
83 |
+
continue
|
84 |
+
try:
|
85 |
+
video_frames = face_detector.affine_transform_video(video_input)
|
86 |
+
except Exception as e: # Handle the exception of face not detcted
|
87 |
+
print(f"Exception: {e} - {video_input}")
|
88 |
+
continue
|
89 |
+
|
90 |
+
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
91 |
+
combine_video_audio(video_frames, video_input, video_output, process_temp_dir)
|
92 |
+
print(f"Saved: {video_output}")
|
93 |
+
|
94 |
+
face_detector.close()
|
95 |
+
|
96 |
+
|
97 |
+
def split(a, n):
|
98 |
+
k, m = divmod(len(a), n)
|
99 |
+
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
|
100 |
+
|
101 |
+
|
102 |
+
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers):
|
103 |
+
print(f"Recursively gathering video paths of {input_dir} ...")
|
104 |
+
gather_video_paths(input_dir, output_dir)
|
105 |
+
num_devices = torch.cuda.device_count()
|
106 |
+
if num_devices == 0:
|
107 |
+
raise RuntimeError("No GPUs found")
|
108 |
+
|
109 |
+
if os.path.exists(temp_dir):
|
110 |
+
shutil.rmtree(temp_dir)
|
111 |
+
os.makedirs(temp_dir, exist_ok=True)
|
112 |
+
|
113 |
+
split_paths = list(split(paths, num_workers * num_devices))
|
114 |
+
|
115 |
+
processes = []
|
116 |
+
|
117 |
+
for i in range(num_devices):
|
118 |
+
for j in range(num_workers):
|
119 |
+
process_index = i * num_workers + j
|
120 |
+
process = Process(
|
121 |
+
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution)
|
122 |
+
)
|
123 |
+
process.start()
|
124 |
+
processes.append(process)
|
125 |
+
|
126 |
+
for process in processes:
|
127 |
+
process.join()
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train"
|
132 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train"
|
133 |
+
temp_dir = "temp"
|
134 |
+
resolution = 256
|
135 |
+
num_workers = 10 # How many processes per device
|
136 |
+
|
137 |
+
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers)
|
preprocess/data_processing_pipeline.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
from preprocess.affine_transform import affine_transform_multi_gpus
|
18 |
+
from preprocess.remove_broken_videos import remove_broken_videos_multiprocessing
|
19 |
+
from preprocess.detect_shot import detect_shot_multiprocessing
|
20 |
+
from preprocess.filter_high_resolution import filter_high_resolution_multiprocessing
|
21 |
+
from preprocess.resample_fps_hz import resample_fps_hz_multiprocessing
|
22 |
+
from preprocess.segment_videos import segment_videos_multiprocessing
|
23 |
+
from preprocess.sync_av import sync_av_multi_gpus
|
24 |
+
from preprocess.filter_visual_quality import filter_visual_quality_multi_gpus
|
25 |
+
from preprocess.remove_incorrect_affined import remove_incorrect_affined_multiprocessing
|
26 |
+
|
27 |
+
|
28 |
+
def data_processing_pipeline(
|
29 |
+
total_num_workers, per_gpu_num_workers, resolution, sync_conf_threshold, temp_dir, input_dir
|
30 |
+
):
|
31 |
+
print("Removing broken videos...")
|
32 |
+
remove_broken_videos_multiprocessing(input_dir, total_num_workers)
|
33 |
+
|
34 |
+
print("Resampling FPS hz...")
|
35 |
+
resampled_dir = os.path.join(os.path.dirname(input_dir), "resampled")
|
36 |
+
resample_fps_hz_multiprocessing(input_dir, resampled_dir, total_num_workers)
|
37 |
+
|
38 |
+
print("Detecting shot...")
|
39 |
+
shot_dir = os.path.join(os.path.dirname(input_dir), "shot")
|
40 |
+
detect_shot_multiprocessing(resampled_dir, shot_dir, total_num_workers)
|
41 |
+
|
42 |
+
print("Segmenting videos...")
|
43 |
+
segmented_dir = os.path.join(os.path.dirname(input_dir), "segmented")
|
44 |
+
segment_videos_multiprocessing(shot_dir, segmented_dir, total_num_workers)
|
45 |
+
|
46 |
+
print("Filtering high resolution...")
|
47 |
+
high_resolution_dir = os.path.join(os.path.dirname(input_dir), "high_resolution")
|
48 |
+
filter_high_resolution_multiprocessing(segmented_dir, high_resolution_dir, resolution, total_num_workers)
|
49 |
+
|
50 |
+
print("Affine transforming videos...")
|
51 |
+
affine_transformed_dir = os.path.join(os.path.dirname(input_dir), "affine_transformed")
|
52 |
+
affine_transform_multi_gpus(
|
53 |
+
high_resolution_dir, affine_transformed_dir, temp_dir, resolution, per_gpu_num_workers // 2
|
54 |
+
)
|
55 |
+
|
56 |
+
print("Removing incorrect affined videos...")
|
57 |
+
remove_incorrect_affined_multiprocessing(affine_transformed_dir, total_num_workers)
|
58 |
+
|
59 |
+
print("Syncing audio and video...")
|
60 |
+
av_synced_dir = os.path.join(os.path.dirname(input_dir), f"av_synced_{sync_conf_threshold}")
|
61 |
+
sync_av_multi_gpus(affine_transformed_dir, av_synced_dir, temp_dir, per_gpu_num_workers, sync_conf_threshold)
|
62 |
+
|
63 |
+
print("Filtering visual quality...")
|
64 |
+
high_visual_quality_dir = os.path.join(os.path.dirname(input_dir), "high_visual_quality")
|
65 |
+
filter_visual_quality_multi_gpus(av_synced_dir, high_visual_quality_dir, per_gpu_num_workers)
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
parser = argparse.ArgumentParser()
|
70 |
+
parser.add_argument("--total_num_workers", type=int, default=100)
|
71 |
+
parser.add_argument("--per_gpu_num_workers", type=int, default=20)
|
72 |
+
parser.add_argument("--resolution", type=int, default=256)
|
73 |
+
parser.add_argument("--sync_conf_threshold", type=int, default=3)
|
74 |
+
parser.add_argument("--temp_dir", type=str, default="temp")
|
75 |
+
parser.add_argument("--input_dir", type=str, required=True)
|
76 |
+
args = parser.parse_args()
|
77 |
+
|
78 |
+
data_processing_pipeline(
|
79 |
+
args.total_num_workers,
|
80 |
+
args.per_gpu_num_workers,
|
81 |
+
args.resolution,
|
82 |
+
args.sync_conf_threshold,
|
83 |
+
args.temp_dir,
|
84 |
+
args.input_dir,
|
85 |
+
)
|
preprocess/detect_shot.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
import tqdm
|
18 |
+
from multiprocessing import Pool
|
19 |
+
|
20 |
+
paths = []
|
21 |
+
|
22 |
+
|
23 |
+
def gather_paths(input_dir, output_dir):
|
24 |
+
for video in sorted(os.listdir(input_dir)):
|
25 |
+
if video.endswith(".mp4"):
|
26 |
+
video_input = os.path.join(input_dir, video)
|
27 |
+
video_output = os.path.join(output_dir, video)
|
28 |
+
if os.path.isfile(video_output):
|
29 |
+
continue
|
30 |
+
paths.append([video_input, output_dir])
|
31 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
32 |
+
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
33 |
+
|
34 |
+
|
35 |
+
def detect_shot(video_input, output_dir):
|
36 |
+
os.makedirs(output_dir, exist_ok=True)
|
37 |
+
video = os.path.basename(video_input)[:-4]
|
38 |
+
command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
|
39 |
+
# command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --high-quality --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
|
40 |
+
subprocess.run(command, shell=True)
|
41 |
+
|
42 |
+
|
43 |
+
def multi_run_wrapper(args):
|
44 |
+
return detect_shot(*args)
|
45 |
+
|
46 |
+
|
47 |
+
def detect_shot_multiprocessing(input_dir, output_dir, num_workers):
|
48 |
+
print(f"Recursively gathering video paths of {input_dir} ...")
|
49 |
+
gather_paths(input_dir, output_dir)
|
50 |
+
|
51 |
+
print(f"Detecting shot of {input_dir} ...")
|
52 |
+
with Pool(num_workers) as pool:
|
53 |
+
for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/high-resolution"
|
59 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/shot"
|
60 |
+
num_workers = 50
|
61 |
+
|
62 |
+
detect_shot_multiprocessing(input_dir, output_dir, num_workers)
|
preprocess/filter_high_resolution.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import mediapipe as mp
|
16 |
+
from latentsync.utils.util import read_video
|
17 |
+
import os
|
18 |
+
import tqdm
|
19 |
+
import shutil
|
20 |
+
from multiprocessing import Pool
|
21 |
+
|
22 |
+
paths = []
|
23 |
+
|
24 |
+
|
25 |
+
def gather_video_paths(input_dir, output_dir, resolution):
|
26 |
+
for video in sorted(os.listdir(input_dir)):
|
27 |
+
if video.endswith(".mp4"):
|
28 |
+
video_input = os.path.join(input_dir, video)
|
29 |
+
video_output = os.path.join(output_dir, video)
|
30 |
+
if os.path.isfile(video_output):
|
31 |
+
continue
|
32 |
+
paths.append([video_input, video_output, resolution])
|
33 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
34 |
+
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video), resolution)
|
35 |
+
|
36 |
+
|
37 |
+
class FaceDetector:
|
38 |
+
def __init__(self, resolution=256):
|
39 |
+
self.face_detection = mp.solutions.face_detection.FaceDetection(
|
40 |
+
model_selection=0, min_detection_confidence=0.5
|
41 |
+
)
|
42 |
+
self.resolution = resolution
|
43 |
+
|
44 |
+
def detect_face(self, image):
|
45 |
+
height, width = image.shape[:2]
|
46 |
+
# Process the image and detect faces.
|
47 |
+
results = self.face_detection.process(image)
|
48 |
+
|
49 |
+
if not results.detections: # Face not detected
|
50 |
+
raise Exception("Face not detected")
|
51 |
+
|
52 |
+
if len(results.detections) != 1:
|
53 |
+
return False
|
54 |
+
detection = results.detections[0] # Only use the first face in the image
|
55 |
+
|
56 |
+
bounding_box = detection.location_data.relative_bounding_box
|
57 |
+
face_width = int(bounding_box.width * width)
|
58 |
+
face_height = int(bounding_box.height * height)
|
59 |
+
if face_width < self.resolution or face_height < self.resolution:
|
60 |
+
return False
|
61 |
+
return True
|
62 |
+
|
63 |
+
def detect_video(self, video_path):
|
64 |
+
video_frames = read_video(video_path, change_fps=False)
|
65 |
+
if len(video_frames) == 0:
|
66 |
+
return False
|
67 |
+
for frame in video_frames:
|
68 |
+
if not self.detect_face(frame):
|
69 |
+
return False
|
70 |
+
return True
|
71 |
+
|
72 |
+
def close(self):
|
73 |
+
self.face_detection.close()
|
74 |
+
|
75 |
+
|
76 |
+
def filter_video(video_input, video_out, resolution):
|
77 |
+
if os.path.isfile(video_out):
|
78 |
+
return
|
79 |
+
face_detector = FaceDetector(resolution)
|
80 |
+
try:
|
81 |
+
save = face_detector.detect_video(video_input)
|
82 |
+
except Exception as e:
|
83 |
+
# print(f"Exception: {e} Input video: {video_input}")
|
84 |
+
face_detector.close()
|
85 |
+
return
|
86 |
+
if save:
|
87 |
+
os.makedirs(os.path.dirname(video_out), exist_ok=True)
|
88 |
+
shutil.copy(video_input, video_out)
|
89 |
+
face_detector.close()
|
90 |
+
|
91 |
+
|
92 |
+
def multi_run_wrapper(args):
|
93 |
+
return filter_video(*args)
|
94 |
+
|
95 |
+
|
96 |
+
def filter_high_resolution_multiprocessing(input_dir, output_dir, resolution, num_workers):
|
97 |
+
print(f"Recursively gathering video paths of {input_dir} ...")
|
98 |
+
gather_video_paths(input_dir, output_dir, resolution)
|
99 |
+
|
100 |
+
print(f"Filtering high resolution videos in {input_dir} ...")
|
101 |
+
with Pool(num_workers) as pool:
|
102 |
+
for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
|
103 |
+
pass
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
input_dir = "/mnt/bn/maliva-gen-ai/lichunyu/HDTF/original/train"
|
108 |
+
output_dir = "/mnt/bn/maliva-gen-ai/lichunyu/HDTF/detected/train"
|
109 |
+
resolution = 256
|
110 |
+
num_workers = 50
|
111 |
+
|
112 |
+
filter_high_resolution_multiprocessing(input_dir, output_dir, resolution, num_workers)
|
preprocess/filter_visual_quality.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import tqdm
|
17 |
+
import torch
|
18 |
+
import torchvision
|
19 |
+
import shutil
|
20 |
+
from multiprocessing import Process
|
21 |
+
import numpy as np
|
22 |
+
from decord import VideoReader
|
23 |
+
from einops import rearrange
|
24 |
+
from eval.hyper_iqa import HyperNet, TargetNet
|
25 |
+
|
26 |
+
|
27 |
+
paths = []
|
28 |
+
|
29 |
+
|
30 |
+
def gather_paths(input_dir, output_dir):
|
31 |
+
# os.makedirs(output_dir, exist_ok=True)
|
32 |
+
|
33 |
+
for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
|
34 |
+
if video.endswith(".mp4"):
|
35 |
+
video_input = os.path.join(input_dir, video)
|
36 |
+
video_output = os.path.join(output_dir, video)
|
37 |
+
if os.path.isfile(video_output):
|
38 |
+
continue
|
39 |
+
paths.append((video_input, video_output))
|
40 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
41 |
+
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
42 |
+
|
43 |
+
|
44 |
+
def read_video(video_path: str):
|
45 |
+
vr = VideoReader(video_path)
|
46 |
+
first_frame = vr[0].asnumpy()
|
47 |
+
middle_frame = vr[len(vr) // 2].asnumpy()
|
48 |
+
last_frame = vr[-1].asnumpy()
|
49 |
+
vr.seek(0)
|
50 |
+
video_frames = np.stack([first_frame, middle_frame, last_frame], axis=0)
|
51 |
+
video_frames = torch.from_numpy(rearrange(video_frames, "b h w c -> b c h w"))
|
52 |
+
video_frames = video_frames / 255.0
|
53 |
+
return video_frames
|
54 |
+
|
55 |
+
|
56 |
+
def func(paths, device_id):
|
57 |
+
device = f"cuda:{device_id}"
|
58 |
+
|
59 |
+
model_hyper = HyperNet(16, 112, 224, 112, 56, 28, 14, 7).to(device)
|
60 |
+
model_hyper.train(False)
|
61 |
+
|
62 |
+
# load the pre-trained model on the koniq-10k dataset
|
63 |
+
model_hyper.load_state_dict((torch.load("checkpoints/auxiliary/koniq_pretrained.pkl", map_location=device)))
|
64 |
+
|
65 |
+
transforms = torchvision.transforms.Compose(
|
66 |
+
[
|
67 |
+
torchvision.transforms.CenterCrop(size=224),
|
68 |
+
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
for video_input, video_output in paths:
|
73 |
+
try:
|
74 |
+
video_frames = read_video(video_input)
|
75 |
+
video_frames = transforms(video_frames)
|
76 |
+
video_frames = video_frames.clone().detach().to(device)
|
77 |
+
paras = model_hyper(video_frames) # 'paras' contains the network weights conveyed to target network
|
78 |
+
|
79 |
+
# Building target network
|
80 |
+
model_target = TargetNet(paras).to(device)
|
81 |
+
for param in model_target.parameters():
|
82 |
+
param.requires_grad = False
|
83 |
+
|
84 |
+
# Quality prediction
|
85 |
+
pred = model_target(paras["target_in_vec"]) # 'paras['target_in_vec']' is the input to target net
|
86 |
+
|
87 |
+
# quality score ranges from 0-100, a higher score indicates a better quality
|
88 |
+
quality_score = pred.mean().item()
|
89 |
+
print(f"Input video: {video_input}\nVisual quality score: {quality_score:.2f}")
|
90 |
+
|
91 |
+
if quality_score >= 40:
|
92 |
+
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
93 |
+
shutil.copy(video_input, video_output)
|
94 |
+
except Exception as e:
|
95 |
+
print(e)
|
96 |
+
|
97 |
+
|
98 |
+
def split(a, n):
|
99 |
+
k, m = divmod(len(a), n)
|
100 |
+
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
|
101 |
+
|
102 |
+
|
103 |
+
def filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers):
|
104 |
+
gather_paths(input_dir, output_dir)
|
105 |
+
num_devices = torch.cuda.device_count()
|
106 |
+
if num_devices == 0:
|
107 |
+
raise RuntimeError("No GPUs found")
|
108 |
+
split_paths = list(split(paths, num_workers * num_devices))
|
109 |
+
processes = []
|
110 |
+
|
111 |
+
for i in range(num_devices):
|
112 |
+
for j in range(num_workers):
|
113 |
+
process_index = i * num_workers + j
|
114 |
+
process = Process(target=func, args=(split_paths[process_index], i))
|
115 |
+
process.start()
|
116 |
+
processes.append(process)
|
117 |
+
|
118 |
+
for process in processes:
|
119 |
+
process.join()
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/av_synced_high"
|
124 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality"
|
125 |
+
num_workers = 20 # How many processes per device
|
126 |
+
|
127 |
+
filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers)
|
preprocess/remove_broken_videos.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
from multiprocessing import Pool
|
17 |
+
import tqdm
|
18 |
+
|
19 |
+
from latentsync.utils.av_reader import AVReader
|
20 |
+
from latentsync.utils.util import gather_video_paths_recursively
|
21 |
+
|
22 |
+
|
23 |
+
def remove_broken_video(video_path):
|
24 |
+
try:
|
25 |
+
AVReader(video_path)
|
26 |
+
except Exception:
|
27 |
+
os.remove(video_path)
|
28 |
+
|
29 |
+
|
30 |
+
def remove_broken_videos_multiprocessing(input_dir, num_workers):
|
31 |
+
video_paths = gather_video_paths_recursively(input_dir)
|
32 |
+
|
33 |
+
print("Removing broken videos...")
|
34 |
+
with Pool(num_workers) as pool:
|
35 |
+
for _ in tqdm.tqdm(pool.imap_unordered(remove_broken_video, video_paths), total=len(video_paths)):
|
36 |
+
pass
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual/affine_transformed"
|
41 |
+
num_workers = 50
|
42 |
+
|
43 |
+
remove_broken_videos_multiprocessing(input_dir, num_workers)
|
preprocess/remove_incorrect_affined.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import mediapipe as mp
|
16 |
+
from latentsync.utils.util import read_video, gather_video_paths_recursively
|
17 |
+
import os
|
18 |
+
import tqdm
|
19 |
+
from multiprocessing import Pool
|
20 |
+
|
21 |
+
|
22 |
+
class FaceDetector:
|
23 |
+
def __init__(self):
|
24 |
+
self.face_detection = mp.solutions.face_detection.FaceDetection(
|
25 |
+
model_selection=0, min_detection_confidence=0.5
|
26 |
+
)
|
27 |
+
|
28 |
+
def detect_face(self, image):
|
29 |
+
# Process the image and detect faces.
|
30 |
+
results = self.face_detection.process(image)
|
31 |
+
|
32 |
+
if not results.detections: # Face not detected
|
33 |
+
return False
|
34 |
+
|
35 |
+
if len(results.detections) != 1:
|
36 |
+
return False
|
37 |
+
return True
|
38 |
+
|
39 |
+
def detect_video(self, video_path):
|
40 |
+
try:
|
41 |
+
video_frames = read_video(video_path, change_fps=False)
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Exception: {e} - {video_path}")
|
44 |
+
return False
|
45 |
+
if len(video_frames) == 0:
|
46 |
+
return False
|
47 |
+
for frame in video_frames:
|
48 |
+
if not self.detect_face(frame):
|
49 |
+
return False
|
50 |
+
return True
|
51 |
+
|
52 |
+
def close(self):
|
53 |
+
self.face_detection.close()
|
54 |
+
|
55 |
+
|
56 |
+
def remove_incorrect_affined(video_path):
|
57 |
+
if not os.path.isfile(video_path):
|
58 |
+
return
|
59 |
+
face_detector = FaceDetector()
|
60 |
+
has_face = face_detector.detect_video(video_path)
|
61 |
+
if not has_face:
|
62 |
+
os.remove(video_path)
|
63 |
+
print(f"Removed: {video_path}")
|
64 |
+
face_detector.close()
|
65 |
+
|
66 |
+
|
67 |
+
def remove_incorrect_affined_multiprocessing(input_dir, num_workers):
|
68 |
+
video_paths = gather_video_paths_recursively(input_dir)
|
69 |
+
print(f"Total videos: {len(video_paths)}")
|
70 |
+
|
71 |
+
print(f"Removing incorrect affined videos in {input_dir} ...")
|
72 |
+
with Pool(num_workers) as pool:
|
73 |
+
for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)):
|
74 |
+
pass
|
75 |
+
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality"
|
79 |
+
num_workers = 50
|
80 |
+
|
81 |
+
remove_incorrect_affined_multiprocessing(input_dir, num_workers)
|
preprocess/resample_fps_hz.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
import tqdm
|
18 |
+
from multiprocessing import Pool
|
19 |
+
import cv2
|
20 |
+
|
21 |
+
paths = []
|
22 |
+
|
23 |
+
|
24 |
+
def gather_paths(input_dir, output_dir):
|
25 |
+
for video in sorted(os.listdir(input_dir)):
|
26 |
+
if video.endswith(".mp4"):
|
27 |
+
video_input = os.path.join(input_dir, video)
|
28 |
+
video_output = os.path.join(output_dir, video)
|
29 |
+
if os.path.isfile(video_output):
|
30 |
+
continue
|
31 |
+
paths.append([video_input, video_output])
|
32 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
33 |
+
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
34 |
+
|
35 |
+
|
36 |
+
def get_video_fps(video_path: str):
|
37 |
+
cam = cv2.VideoCapture(video_path)
|
38 |
+
fps = cam.get(cv2.CAP_PROP_FPS)
|
39 |
+
return fps
|
40 |
+
|
41 |
+
|
42 |
+
def resample_fps_hz(video_input, video_output):
|
43 |
+
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
44 |
+
if get_video_fps(video_input) == 25:
|
45 |
+
command = f"ffmpeg -loglevel error -y -i {video_input} -c:v copy -ar 16000 -q:a 0 {video_output}"
|
46 |
+
else:
|
47 |
+
command = f"ffmpeg -loglevel error -y -i {video_input} -r 25 -ar 16000 -q:a 0 {video_output}"
|
48 |
+
subprocess.run(command, shell=True)
|
49 |
+
|
50 |
+
|
51 |
+
def multi_run_wrapper(args):
|
52 |
+
return resample_fps_hz(*args)
|
53 |
+
|
54 |
+
|
55 |
+
def resample_fps_hz_multiprocessing(input_dir, output_dir, num_workers):
|
56 |
+
print(f"Recursively gathering video paths of {input_dir} ...")
|
57 |
+
gather_paths(input_dir, output_dir)
|
58 |
+
|
59 |
+
print(f"Resampling FPS and Hz of {input_dir} ...")
|
60 |
+
with Pool(num_workers) as pool:
|
61 |
+
for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
|
62 |
+
pass
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/train"
|
67 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/resampled_test"
|
68 |
+
num_workers = 20
|
69 |
+
|
70 |
+
resample_fps_hz_multiprocessing(input_dir, output_dir, num_workers)
|
preprocess/segment_videos.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
import tqdm
|
18 |
+
from multiprocessing import Pool
|
19 |
+
|
20 |
+
paths = []
|
21 |
+
|
22 |
+
|
23 |
+
def gather_paths(input_dir, output_dir):
|
24 |
+
for video in sorted(os.listdir(input_dir)):
|
25 |
+
if video.endswith(".mp4"):
|
26 |
+
video_basename = video[:-4]
|
27 |
+
video_input = os.path.join(input_dir, video)
|
28 |
+
video_output = os.path.join(output_dir, f"{video_basename}_%03d.mp4")
|
29 |
+
if os.path.isfile(video_output):
|
30 |
+
continue
|
31 |
+
paths.append([video_input, video_output])
|
32 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
33 |
+
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
34 |
+
|
35 |
+
|
36 |
+
def segment_video(video_input, video_output):
|
37 |
+
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
38 |
+
command = f"ffmpeg -loglevel error -y -i {video_input} -map 0 -c:v copy -segment_time 5 -f segment -reset_timestamps 1 -q:a 0 {video_output}"
|
39 |
+
# command = f'ffmpeg -loglevel error -y -i {video_input} -map 0 -segment_time 5 -f segment -reset_timestamps 1 -force_key_frames "expr:gte(t,n_forced*5)" -crf 18 -q:a 0 {video_output}'
|
40 |
+
subprocess.run(command, shell=True)
|
41 |
+
|
42 |
+
|
43 |
+
def multi_run_wrapper(args):
|
44 |
+
return segment_video(*args)
|
45 |
+
|
46 |
+
|
47 |
+
def segment_videos_multiprocessing(input_dir, output_dir, num_workers):
|
48 |
+
print(f"Recursively gathering video paths of {input_dir} ...")
|
49 |
+
gather_paths(input_dir, output_dir)
|
50 |
+
|
51 |
+
print(f"Segmenting videos of {input_dir} ...")
|
52 |
+
with Pool(num_workers) as pool:
|
53 |
+
for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars_new/cut"
|
59 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars_new/segmented"
|
60 |
+
num_workers = 50
|
61 |
+
|
62 |
+
segment_videos_multiprocessing(input_dir, output_dir, num_workers)
|
preprocess/sync_av.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import tqdm
|
17 |
+
from eval.syncnet import SyncNetEval
|
18 |
+
from eval.syncnet_detect import SyncNetDetector
|
19 |
+
from eval.eval_sync_conf import syncnet_eval
|
20 |
+
import torch
|
21 |
+
import subprocess
|
22 |
+
import shutil
|
23 |
+
from multiprocessing import Process
|
24 |
+
|
25 |
+
paths = []
|
26 |
+
|
27 |
+
|
28 |
+
def gather_paths(input_dir, output_dir):
|
29 |
+
# os.makedirs(output_dir, exist_ok=True)
|
30 |
+
|
31 |
+
for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
|
32 |
+
if video.endswith(".mp4"):
|
33 |
+
video_input = os.path.join(input_dir, video)
|
34 |
+
video_output = os.path.join(output_dir, video)
|
35 |
+
if os.path.isfile(video_output):
|
36 |
+
continue
|
37 |
+
paths.append((video_input, video_output))
|
38 |
+
elif os.path.isdir(os.path.join(input_dir, video)):
|
39 |
+
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
40 |
+
|
41 |
+
|
42 |
+
def adjust_offset(video_input: str, video_output: str, av_offset: int, fps: int = 25):
|
43 |
+
command = f"ffmpeg -loglevel error -y -i {video_input} -itsoffset {av_offset/fps} -i {video_input} -map 0:v -map 1:a -c copy -q:v 0 -q:a 0 {video_output}"
|
44 |
+
subprocess.run(command, shell=True)
|
45 |
+
|
46 |
+
|
47 |
+
def func(sync_conf_threshold, paths, device_id, process_temp_dir):
|
48 |
+
os.makedirs(process_temp_dir, exist_ok=True)
|
49 |
+
device = f"cuda:{device_id}"
|
50 |
+
|
51 |
+
syncnet = SyncNetEval(device=device)
|
52 |
+
syncnet.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
|
53 |
+
|
54 |
+
detect_results_dir = os.path.join(process_temp_dir, "detect_results")
|
55 |
+
syncnet_eval_results_dir = os.path.join(process_temp_dir, "syncnet_eval_results")
|
56 |
+
|
57 |
+
syncnet_detector = SyncNetDetector(device=device, detect_results_dir=detect_results_dir)
|
58 |
+
|
59 |
+
for video_input, video_output in paths:
|
60 |
+
try:
|
61 |
+
av_offset, conf = syncnet_eval(
|
62 |
+
syncnet, syncnet_detector, video_input, syncnet_eval_results_dir, detect_results_dir
|
63 |
+
)
|
64 |
+
if conf >= sync_conf_threshold and abs(av_offset) <= 6:
|
65 |
+
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
66 |
+
if av_offset == 0:
|
67 |
+
shutil.copy(video_input, video_output)
|
68 |
+
else:
|
69 |
+
adjust_offset(video_input, video_output, av_offset)
|
70 |
+
except Exception as e:
|
71 |
+
print(e)
|
72 |
+
|
73 |
+
|
74 |
+
def split(a, n):
|
75 |
+
k, m = divmod(len(a), n)
|
76 |
+
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
|
77 |
+
|
78 |
+
|
79 |
+
def sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold):
|
80 |
+
gather_paths(input_dir, output_dir)
|
81 |
+
num_devices = torch.cuda.device_count()
|
82 |
+
if num_devices == 0:
|
83 |
+
raise RuntimeError("No GPUs found")
|
84 |
+
split_paths = list(split(paths, num_workers * num_devices))
|
85 |
+
processes = []
|
86 |
+
|
87 |
+
for i in range(num_devices):
|
88 |
+
for j in range(num_workers):
|
89 |
+
process_index = i * num_workers + j
|
90 |
+
process = Process(
|
91 |
+
target=func,
|
92 |
+
args=(
|
93 |
+
sync_conf_threshold,
|
94 |
+
split_paths[process_index],
|
95 |
+
i,
|
96 |
+
os.path.join(temp_dir, f"process_{process_index}"),
|
97 |
+
),
|
98 |
+
)
|
99 |
+
process.start()
|
100 |
+
processes.append(process)
|
101 |
+
|
102 |
+
for process in processes:
|
103 |
+
process.join()
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/affine_transformed"
|
108 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/temp"
|
109 |
+
temp_dir = "temp"
|
110 |
+
num_workers = 20 # How many processes per device
|
111 |
+
sync_conf_threshold = 3
|
112 |
+
|
113 |
+
sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold)
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.2
|
2 |
+
torchvision==0.17.2
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
4 |
+
xformers==0.0.26
|
5 |
+
triton==2.2.0
|
6 |
+
|
7 |
+
diffusers==0.11.1
|
8 |
+
transformers==4.38.0
|
9 |
+
huggingface-hub==0.25.2
|
10 |
+
imageio==2.27.0
|
11 |
+
decord==0.6.0
|
12 |
+
accelerate==0.26.1
|
13 |
+
einops==0.7.0
|
14 |
+
omegaconf==2.3.0
|
15 |
+
safetensors==0.4.2
|
16 |
+
opencv-python==4.9.0.80
|
17 |
+
mediapipe==0.10.11
|
18 |
+
av==11.0.0
|
19 |
+
torch-fidelity==0.3.0
|
20 |
+
torchmetrics==1.3.1
|
21 |
+
python_speech_features==0.6
|
22 |
+
librosa==0.10.1
|
23 |
+
scenedetect==0.6.1
|
24 |
+
ffmpeg-python==0.2.0
|
25 |
+
lpips==0.1.4
|
26 |
+
face-alignment==1.4.1
|
27 |
+
ninja==1.11.1.1
|
28 |
+
pandas==2.0.3
|
29 |
+
numpy==1.24.4
|
30 |
+
gradio==5.9.1
|
scripts/inference.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
from omegaconf import OmegaConf
|
17 |
+
import torch
|
18 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
19 |
+
from latentsync.models.unet import UNet3DConditionModel
|
20 |
+
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
|
21 |
+
from diffusers.utils.import_utils import is_xformers_available
|
22 |
+
from accelerate.utils import set_seed
|
23 |
+
from latentsync.whisper.audio2feature import Audio2Feature
|
24 |
+
|
25 |
+
|
26 |
+
def main(config, args):
|
27 |
+
# Check if the GPU supports float16
|
28 |
+
is_fp16_supported = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 7
|
29 |
+
dtype = torch.float16 if is_fp16_supported else torch.float32
|
30 |
+
|
31 |
+
print(f"Input video path: {args.video_path}")
|
32 |
+
print(f"Input audio path: {args.audio_path}")
|
33 |
+
print(f"Loaded checkpoint path: {args.inference_ckpt_path}")
|
34 |
+
|
35 |
+
scheduler = DDIMScheduler.from_pretrained("configs")
|
36 |
+
|
37 |
+
if config.model.cross_attention_dim == 768:
|
38 |
+
whisper_model_path = "checkpoints/whisper/small.pt"
|
39 |
+
elif config.model.cross_attention_dim == 384:
|
40 |
+
whisper_model_path = "checkpoints/whisper/tiny.pt"
|
41 |
+
else:
|
42 |
+
raise NotImplementedError("cross_attention_dim must be 768 or 384")
|
43 |
+
|
44 |
+
audio_encoder = Audio2Feature(model_path=whisper_model_path, device="cuda", num_frames=config.data.num_frames)
|
45 |
+
|
46 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
|
47 |
+
vae.config.scaling_factor = 0.18215
|
48 |
+
vae.config.shift_factor = 0
|
49 |
+
|
50 |
+
unet, _ = UNet3DConditionModel.from_pretrained(
|
51 |
+
OmegaConf.to_container(config.model),
|
52 |
+
args.inference_ckpt_path, # load checkpoint
|
53 |
+
device="cpu",
|
54 |
+
)
|
55 |
+
|
56 |
+
unet = unet.to(dtype=dtype)
|
57 |
+
|
58 |
+
# set xformers
|
59 |
+
if is_xformers_available():
|
60 |
+
unet.enable_xformers_memory_efficient_attention()
|
61 |
+
|
62 |
+
pipeline = LipsyncPipeline(
|
63 |
+
vae=vae,
|
64 |
+
audio_encoder=audio_encoder,
|
65 |
+
unet=unet,
|
66 |
+
scheduler=scheduler,
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
if args.seed != -1:
|
70 |
+
set_seed(args.seed)
|
71 |
+
else:
|
72 |
+
torch.seed()
|
73 |
+
|
74 |
+
print(f"Initial seed: {torch.initial_seed()}")
|
75 |
+
|
76 |
+
pipeline(
|
77 |
+
video_path=args.video_path,
|
78 |
+
audio_path=args.audio_path,
|
79 |
+
video_out_path=args.video_out_path,
|
80 |
+
video_mask_path=args.video_out_path.replace(".mp4", "_mask.mp4"),
|
81 |
+
num_frames=config.data.num_frames,
|
82 |
+
num_inference_steps=config.run.inference_steps,
|
83 |
+
guidance_scale=args.guidance_scale,
|
84 |
+
weight_dtype=dtype,
|
85 |
+
width=config.data.resolution,
|
86 |
+
height=config.data.resolution,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
parser = argparse.ArgumentParser()
|
92 |
+
parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")
|
93 |
+
parser.add_argument("--inference_ckpt_path", type=str, required=True)
|
94 |
+
parser.add_argument("--video_path", type=str, required=True)
|
95 |
+
parser.add_argument("--audio_path", type=str, required=True)
|
96 |
+
parser.add_argument("--video_out_path", type=str, required=True)
|
97 |
+
parser.add_argument("--guidance_scale", type=float, default=1.0)
|
98 |
+
parser.add_argument("--seed", type=int, default=1247)
|
99 |
+
args = parser.parse_args()
|
100 |
+
|
101 |
+
config = OmegaConf.load(args.unet_config_path)
|
102 |
+
|
103 |
+
main(config, args)
|
scripts/train_syncnet.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from tqdm.auto import tqdm
|
16 |
+
import os, argparse, datetime, math
|
17 |
+
import logging
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
import shutil
|
20 |
+
|
21 |
+
from latentsync.data.syncnet_dataset import SyncNetDataset
|
22 |
+
from latentsync.models.syncnet import SyncNet
|
23 |
+
from latentsync.models.syncnet_wav2lip import SyncNetWav2Lip
|
24 |
+
from latentsync.utils.util import gather_loss, plot_loss_chart
|
25 |
+
from accelerate.utils import set_seed
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from diffusers import AutoencoderKL
|
29 |
+
from diffusers.utils.logging import get_logger
|
30 |
+
from einops import rearrange
|
31 |
+
import torch.distributed as dist
|
32 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
33 |
+
from torch.utils.data.distributed import DistributedSampler
|
34 |
+
from latentsync.utils.util import init_dist, cosine_loss
|
35 |
+
|
36 |
+
logger = get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
def main(config):
|
40 |
+
# Initialize distributed training
|
41 |
+
local_rank = init_dist()
|
42 |
+
global_rank = dist.get_rank()
|
43 |
+
num_processes = dist.get_world_size()
|
44 |
+
is_main_process = global_rank == 0
|
45 |
+
|
46 |
+
seed = config.run.seed + global_rank
|
47 |
+
set_seed(seed)
|
48 |
+
|
49 |
+
# Logging folder
|
50 |
+
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
|
51 |
+
output_dir = os.path.join(config.data.train_output_dir, folder_name)
|
52 |
+
|
53 |
+
# Make one log on every process with the configuration for debugging.
|
54 |
+
logging.basicConfig(
|
55 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
56 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
57 |
+
level=logging.INFO,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Handle the output folder creation
|
61 |
+
if is_main_process:
|
62 |
+
os.makedirs(output_dir, exist_ok=True)
|
63 |
+
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
|
64 |
+
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
|
65 |
+
shutil.copy(config.config_path, output_dir)
|
66 |
+
|
67 |
+
device = torch.device(local_rank)
|
68 |
+
|
69 |
+
if config.data.latent_space:
|
70 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
71 |
+
vae.requires_grad_(False)
|
72 |
+
vae.to(device)
|
73 |
+
else:
|
74 |
+
vae = None
|
75 |
+
|
76 |
+
# Dataset and Dataloader setup
|
77 |
+
train_dataset = SyncNetDataset(config.data.train_data_dir, config.data.train_fileslist, config)
|
78 |
+
val_dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
|
79 |
+
|
80 |
+
train_distributed_sampler = DistributedSampler(
|
81 |
+
train_dataset,
|
82 |
+
num_replicas=num_processes,
|
83 |
+
rank=global_rank,
|
84 |
+
shuffle=True,
|
85 |
+
seed=config.run.seed,
|
86 |
+
)
|
87 |
+
|
88 |
+
# DataLoaders creation:
|
89 |
+
train_dataloader = torch.utils.data.DataLoader(
|
90 |
+
train_dataset,
|
91 |
+
batch_size=config.data.batch_size,
|
92 |
+
shuffle=False,
|
93 |
+
sampler=train_distributed_sampler,
|
94 |
+
num_workers=config.data.num_workers,
|
95 |
+
pin_memory=False,
|
96 |
+
drop_last=True,
|
97 |
+
worker_init_fn=train_dataset.worker_init_fn,
|
98 |
+
)
|
99 |
+
|
100 |
+
num_samples_limit = 640
|
101 |
+
|
102 |
+
val_batch_size = min(
|
103 |
+
num_samples_limit // config.data.num_frames, config.data.batch_size
|
104 |
+
) # limit batch size to avoid CUDA OOM
|
105 |
+
|
106 |
+
val_dataloader = torch.utils.data.DataLoader(
|
107 |
+
val_dataset,
|
108 |
+
batch_size=val_batch_size,
|
109 |
+
shuffle=False,
|
110 |
+
num_workers=config.data.num_workers,
|
111 |
+
pin_memory=False,
|
112 |
+
drop_last=False,
|
113 |
+
worker_init_fn=val_dataset.worker_init_fn,
|
114 |
+
)
|
115 |
+
|
116 |
+
# Model
|
117 |
+
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
|
118 |
+
# syncnet = SyncNetWav2Lip().to(device)
|
119 |
+
|
120 |
+
optimizer = torch.optim.AdamW(
|
121 |
+
list(filter(lambda p: p.requires_grad, syncnet.parameters())), lr=config.optimizer.lr
|
122 |
+
)
|
123 |
+
|
124 |
+
if config.ckpt.resume_ckpt_path != "":
|
125 |
+
if is_main_process:
|
126 |
+
logger.info(f"Load checkpoint from: {config.ckpt.resume_ckpt_path}")
|
127 |
+
ckpt = torch.load(config.ckpt.resume_ckpt_path, map_location=device)
|
128 |
+
|
129 |
+
syncnet.load_state_dict(ckpt["state_dict"])
|
130 |
+
global_step = ckpt["global_step"]
|
131 |
+
train_step_list = ckpt["train_step_list"]
|
132 |
+
train_loss_list = ckpt["train_loss_list"]
|
133 |
+
val_step_list = ckpt["val_step_list"]
|
134 |
+
val_loss_list = ckpt["val_loss_list"]
|
135 |
+
else:
|
136 |
+
global_step = 0
|
137 |
+
train_step_list = []
|
138 |
+
train_loss_list = []
|
139 |
+
val_step_list = []
|
140 |
+
val_loss_list = []
|
141 |
+
|
142 |
+
# DDP wrapper
|
143 |
+
syncnet = DDP(syncnet, device_ids=[local_rank], output_device=local_rank)
|
144 |
+
|
145 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
146 |
+
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
|
147 |
+
# validation_steps = int(config.ckpt.save_ckpt_steps // 5)
|
148 |
+
# validation_steps = 100
|
149 |
+
|
150 |
+
if is_main_process:
|
151 |
+
logger.info("***** Running training *****")
|
152 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
153 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
154 |
+
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
|
155 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {config.data.batch_size * num_processes}")
|
156 |
+
logger.info(f" Total optimization steps = {config.run.max_train_steps}")
|
157 |
+
|
158 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
159 |
+
num_val_batches = config.data.num_val_samples // (num_processes * config.data.batch_size)
|
160 |
+
|
161 |
+
# Only show the progress bar once on each machine.
|
162 |
+
progress_bar = tqdm(
|
163 |
+
range(0, config.run.max_train_steps), initial=global_step, desc="Steps", disable=not is_main_process
|
164 |
+
)
|
165 |
+
|
166 |
+
# Support mixed-precision training
|
167 |
+
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
|
168 |
+
|
169 |
+
for epoch in range(first_epoch, num_train_epochs):
|
170 |
+
train_dataloader.sampler.set_epoch(epoch)
|
171 |
+
syncnet.train()
|
172 |
+
|
173 |
+
for step, batch in enumerate(train_dataloader):
|
174 |
+
### >>>> Training >>>> ###
|
175 |
+
|
176 |
+
frames = batch["frames"].to(device, dtype=torch.float16)
|
177 |
+
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
|
178 |
+
y = batch["y"].to(device, dtype=torch.float32)
|
179 |
+
|
180 |
+
if config.data.latent_space:
|
181 |
+
max_batch_size = (
|
182 |
+
num_samples_limit // config.data.num_frames
|
183 |
+
) # due to the limited cuda memory, we split the input frames into parts
|
184 |
+
if frames.shape[0] > max_batch_size:
|
185 |
+
assert (
|
186 |
+
frames.shape[0] % max_batch_size == 0
|
187 |
+
), f"max_batch_size {max_batch_size} should be divisible by batch_size {frames.shape[0]}"
|
188 |
+
frames_part_results = []
|
189 |
+
for i in range(0, frames.shape[0], max_batch_size):
|
190 |
+
frames_part = frames[i : i + max_batch_size]
|
191 |
+
frames_part = rearrange(frames_part, "b f c h w -> (b f) c h w")
|
192 |
+
with torch.no_grad():
|
193 |
+
frames_part = vae.encode(frames_part).latent_dist.sample() * 0.18215
|
194 |
+
frames_part_results.append(frames_part)
|
195 |
+
frames = torch.cat(frames_part_results, dim=0)
|
196 |
+
else:
|
197 |
+
frames = rearrange(frames, "b f c h w -> (b f) c h w")
|
198 |
+
with torch.no_grad():
|
199 |
+
frames = vae.encode(frames).latent_dist.sample() * 0.18215
|
200 |
+
|
201 |
+
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
|
202 |
+
else:
|
203 |
+
frames = rearrange(frames, "b f c h w -> b (f c) h w")
|
204 |
+
|
205 |
+
if config.data.lower_half:
|
206 |
+
height = frames.shape[2]
|
207 |
+
frames = frames[:, :, height // 2 :, :]
|
208 |
+
|
209 |
+
# audio_embeds = wav2vec_encoder(audio_samples).last_hidden_state
|
210 |
+
|
211 |
+
# Mixed-precision training
|
212 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
|
213 |
+
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
|
214 |
+
|
215 |
+
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
|
216 |
+
|
217 |
+
optimizer.zero_grad()
|
218 |
+
|
219 |
+
# Backpropagate
|
220 |
+
if config.run.mixed_precision_training:
|
221 |
+
scaler.scale(loss).backward()
|
222 |
+
""" >>> gradient clipping >>> """
|
223 |
+
scaler.unscale_(optimizer)
|
224 |
+
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
|
225 |
+
""" <<< gradient clipping <<< """
|
226 |
+
scaler.step(optimizer)
|
227 |
+
scaler.update()
|
228 |
+
else:
|
229 |
+
loss.backward()
|
230 |
+
""" >>> gradient clipping >>> """
|
231 |
+
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
|
232 |
+
""" <<< gradient clipping <<< """
|
233 |
+
optimizer.step()
|
234 |
+
|
235 |
+
progress_bar.update(1)
|
236 |
+
global_step += 1
|
237 |
+
|
238 |
+
global_average_loss = gather_loss(loss, device)
|
239 |
+
train_step_list.append(global_step)
|
240 |
+
train_loss_list.append(global_average_loss)
|
241 |
+
|
242 |
+
if is_main_process and global_step % config.run.validation_steps == 0:
|
243 |
+
logger.info(f"Validation at step {global_step}")
|
244 |
+
val_loss = validation(
|
245 |
+
val_dataloader,
|
246 |
+
device,
|
247 |
+
syncnet,
|
248 |
+
cosine_loss,
|
249 |
+
config.data.latent_space,
|
250 |
+
config.data.lower_half,
|
251 |
+
vae,
|
252 |
+
num_val_batches,
|
253 |
+
)
|
254 |
+
val_step_list.append(global_step)
|
255 |
+
val_loss_list.append(val_loss)
|
256 |
+
logger.info(f"Validation loss at step {global_step} is {val_loss:0.3f}")
|
257 |
+
|
258 |
+
if is_main_process and global_step % config.ckpt.save_ckpt_steps == 0:
|
259 |
+
checkpoint_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
|
260 |
+
torch.save(
|
261 |
+
{
|
262 |
+
"state_dict": syncnet.module.state_dict(), # to unwrap DDP
|
263 |
+
"global_step": global_step,
|
264 |
+
"train_step_list": train_step_list,
|
265 |
+
"train_loss_list": train_loss_list,
|
266 |
+
"val_step_list": val_step_list,
|
267 |
+
"val_loss_list": val_loss_list,
|
268 |
+
},
|
269 |
+
checkpoint_save_path,
|
270 |
+
)
|
271 |
+
logger.info(f"Saved checkpoint to {checkpoint_save_path}")
|
272 |
+
plot_loss_chart(
|
273 |
+
os.path.join(output_dir, f"loss_charts/loss_chart-{global_step}.png"),
|
274 |
+
("Train loss", train_step_list, train_loss_list),
|
275 |
+
("Val loss", val_step_list, val_loss_list),
|
276 |
+
)
|
277 |
+
|
278 |
+
progress_bar.set_postfix({"step_loss": global_average_loss})
|
279 |
+
if global_step >= config.run.max_train_steps:
|
280 |
+
break
|
281 |
+
|
282 |
+
progress_bar.close()
|
283 |
+
dist.destroy_process_group()
|
284 |
+
|
285 |
+
|
286 |
+
@torch.no_grad()
|
287 |
+
def validation(val_dataloader, device, syncnet, cosine_loss, latent_space, lower_half, vae, num_val_batches):
|
288 |
+
syncnet.eval()
|
289 |
+
|
290 |
+
losses = []
|
291 |
+
val_step = 0
|
292 |
+
while True:
|
293 |
+
for step, batch in enumerate(val_dataloader):
|
294 |
+
### >>>> Validation >>>> ###
|
295 |
+
|
296 |
+
frames = batch["frames"].to(device, dtype=torch.float16)
|
297 |
+
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
|
298 |
+
y = batch["y"].to(device, dtype=torch.float32)
|
299 |
+
|
300 |
+
if latent_space:
|
301 |
+
num_frames = frames.shape[1]
|
302 |
+
frames = rearrange(frames, "b f c h w -> (b f) c h w")
|
303 |
+
frames = vae.encode(frames).latent_dist.sample() * 0.18215
|
304 |
+
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=num_frames)
|
305 |
+
else:
|
306 |
+
frames = rearrange(frames, "b f c h w -> b (f c) h w")
|
307 |
+
|
308 |
+
if lower_half:
|
309 |
+
height = frames.shape[2]
|
310 |
+
frames = frames[:, :, height // 2 :, :]
|
311 |
+
|
312 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
313 |
+
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
|
314 |
+
|
315 |
+
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
|
316 |
+
|
317 |
+
losses.append(loss.item())
|
318 |
+
|
319 |
+
val_step += 1
|
320 |
+
if val_step > num_val_batches:
|
321 |
+
syncnet.train()
|
322 |
+
if len(losses) == 0:
|
323 |
+
raise RuntimeError("No validation data")
|
324 |
+
return sum(losses) / len(losses)
|
325 |
+
|
326 |
+
|
327 |
+
if __name__ == "__main__":
|
328 |
+
parser = argparse.ArgumentParser(description="Code to train the expert lip-sync discriminator")
|
329 |
+
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_vae.yaml")
|
330 |
+
args = parser.parse_args()
|
331 |
+
|
332 |
+
# Load a configuration file
|
333 |
+
config = OmegaConf.load(args.config_path)
|
334 |
+
config.config_path = args.config_path
|
335 |
+
|
336 |
+
main(config)
|
scripts/train_unet.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
import argparse
|
18 |
+
import shutil
|
19 |
+
import datetime
|
20 |
+
import logging
|
21 |
+
from omegaconf import OmegaConf
|
22 |
+
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
from einops import rearrange
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.distributed as dist
|
29 |
+
from torch.utils.data.distributed import DistributedSampler
|
30 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
31 |
+
|
32 |
+
import diffusers
|
33 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
34 |
+
from diffusers.utils.logging import get_logger
|
35 |
+
from diffusers.optimization import get_scheduler
|
36 |
+
from diffusers.utils.import_utils import is_xformers_available
|
37 |
+
from accelerate.utils import set_seed
|
38 |
+
|
39 |
+
from latentsync.data.unet_dataset import UNetDataset
|
40 |
+
from latentsync.models.unet import UNet3DConditionModel
|
41 |
+
from latentsync.models.syncnet import SyncNet
|
42 |
+
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
|
43 |
+
from latentsync.utils.util import (
|
44 |
+
init_dist,
|
45 |
+
cosine_loss,
|
46 |
+
reversed_forward,
|
47 |
+
)
|
48 |
+
from latentsync.utils.util import plot_loss_chart, gather_loss
|
49 |
+
from latentsync.whisper.audio2feature import Audio2Feature
|
50 |
+
from latentsync.trepa import TREPALoss
|
51 |
+
from eval.syncnet import SyncNetEval
|
52 |
+
from eval.syncnet_detect import SyncNetDetector
|
53 |
+
from eval.eval_sync_conf import syncnet_eval
|
54 |
+
import lpips
|
55 |
+
|
56 |
+
|
57 |
+
logger = get_logger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def main(config):
|
61 |
+
# Initialize distributed training
|
62 |
+
local_rank = init_dist()
|
63 |
+
global_rank = dist.get_rank()
|
64 |
+
num_processes = dist.get_world_size()
|
65 |
+
is_main_process = global_rank == 0
|
66 |
+
|
67 |
+
seed = config.run.seed + global_rank
|
68 |
+
set_seed(seed)
|
69 |
+
|
70 |
+
# Logging folder
|
71 |
+
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
|
72 |
+
output_dir = os.path.join(config.data.train_output_dir, folder_name)
|
73 |
+
|
74 |
+
# Make one log on every process with the configuration for debugging.
|
75 |
+
logging.basicConfig(
|
76 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
77 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
78 |
+
level=logging.INFO,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Handle the output folder creation
|
82 |
+
if is_main_process:
|
83 |
+
diffusers.utils.logging.set_verbosity_info()
|
84 |
+
os.makedirs(output_dir, exist_ok=True)
|
85 |
+
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
|
86 |
+
os.makedirs(f"{output_dir}/val_videos", exist_ok=True)
|
87 |
+
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
|
88 |
+
shutil.copy(config.unet_config_path, output_dir)
|
89 |
+
shutil.copy(config.data.syncnet_config_path, output_dir)
|
90 |
+
|
91 |
+
device = torch.device(local_rank)
|
92 |
+
|
93 |
+
noise_scheduler = DDIMScheduler.from_pretrained("configs")
|
94 |
+
|
95 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
96 |
+
vae.config.scaling_factor = 0.18215
|
97 |
+
vae.config.shift_factor = 0
|
98 |
+
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
99 |
+
vae.requires_grad_(False)
|
100 |
+
vae.to(device)
|
101 |
+
|
102 |
+
syncnet_eval_model = SyncNetEval(device=device)
|
103 |
+
syncnet_eval_model.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
|
104 |
+
|
105 |
+
syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
|
106 |
+
|
107 |
+
if config.model.cross_attention_dim == 768:
|
108 |
+
whisper_model_path = "checkpoints/whisper/small.pt"
|
109 |
+
elif config.model.cross_attention_dim == 384:
|
110 |
+
whisper_model_path = "checkpoints/whisper/tiny.pt"
|
111 |
+
else:
|
112 |
+
raise NotImplementedError("cross_attention_dim must be 768 or 384")
|
113 |
+
|
114 |
+
audio_encoder = Audio2Feature(
|
115 |
+
model_path=whisper_model_path,
|
116 |
+
device=device,
|
117 |
+
audio_embeds_cache_dir=config.data.audio_embeds_cache_dir,
|
118 |
+
num_frames=config.data.num_frames,
|
119 |
+
)
|
120 |
+
|
121 |
+
unet, resume_global_step = UNet3DConditionModel.from_pretrained(
|
122 |
+
OmegaConf.to_container(config.model),
|
123 |
+
config.ckpt.resume_ckpt_path, # load checkpoint
|
124 |
+
device=device,
|
125 |
+
)
|
126 |
+
|
127 |
+
if config.model.add_audio_layer and config.run.use_syncnet:
|
128 |
+
syncnet_config = OmegaConf.load(config.data.syncnet_config_path)
|
129 |
+
if syncnet_config.ckpt.inference_ckpt_path == "":
|
130 |
+
raise ValueError("SyncNet path is not provided")
|
131 |
+
syncnet = SyncNet(OmegaConf.to_container(syncnet_config.model)).to(device=device, dtype=torch.float16)
|
132 |
+
syncnet_checkpoint = torch.load(syncnet_config.ckpt.inference_ckpt_path, map_location=device)
|
133 |
+
syncnet.load_state_dict(syncnet_checkpoint["state_dict"])
|
134 |
+
syncnet.requires_grad_(False)
|
135 |
+
|
136 |
+
unet.requires_grad_(True)
|
137 |
+
trainable_params = list(unet.parameters())
|
138 |
+
|
139 |
+
if config.optimizer.scale_lr:
|
140 |
+
config.optimizer.lr = config.optimizer.lr * num_processes
|
141 |
+
|
142 |
+
optimizer = torch.optim.AdamW(trainable_params, lr=config.optimizer.lr)
|
143 |
+
|
144 |
+
if is_main_process:
|
145 |
+
logger.info(f"trainable params number: {len(trainable_params)}")
|
146 |
+
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
|
147 |
+
|
148 |
+
# Enable xformers
|
149 |
+
if config.run.enable_xformers_memory_efficient_attention:
|
150 |
+
if is_xformers_available():
|
151 |
+
unet.enable_xformers_memory_efficient_attention()
|
152 |
+
else:
|
153 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
154 |
+
|
155 |
+
# Enable gradient checkpointing
|
156 |
+
if config.run.enable_gradient_checkpointing:
|
157 |
+
unet.enable_gradient_checkpointing()
|
158 |
+
|
159 |
+
# Get the training dataset
|
160 |
+
train_dataset = UNetDataset(config.data.train_data_dir, config)
|
161 |
+
distributed_sampler = DistributedSampler(
|
162 |
+
train_dataset,
|
163 |
+
num_replicas=num_processes,
|
164 |
+
rank=global_rank,
|
165 |
+
shuffle=True,
|
166 |
+
seed=config.run.seed,
|
167 |
+
)
|
168 |
+
|
169 |
+
# DataLoaders creation:
|
170 |
+
train_dataloader = torch.utils.data.DataLoader(
|
171 |
+
train_dataset,
|
172 |
+
batch_size=config.data.batch_size,
|
173 |
+
shuffle=False,
|
174 |
+
sampler=distributed_sampler,
|
175 |
+
num_workers=config.data.num_workers,
|
176 |
+
pin_memory=False,
|
177 |
+
drop_last=True,
|
178 |
+
worker_init_fn=train_dataset.worker_init_fn,
|
179 |
+
)
|
180 |
+
|
181 |
+
# Get the training iteration
|
182 |
+
if config.run.max_train_steps == -1:
|
183 |
+
assert config.run.max_train_epochs != -1
|
184 |
+
config.run.max_train_steps = config.run.max_train_epochs * len(train_dataloader)
|
185 |
+
|
186 |
+
# Scheduler
|
187 |
+
lr_scheduler = get_scheduler(
|
188 |
+
config.optimizer.lr_scheduler,
|
189 |
+
optimizer=optimizer,
|
190 |
+
num_warmup_steps=config.optimizer.lr_warmup_steps,
|
191 |
+
num_training_steps=config.run.max_train_steps,
|
192 |
+
)
|
193 |
+
|
194 |
+
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
|
195 |
+
lpips_loss_func = lpips.LPIPS(net="vgg").to(device)
|
196 |
+
|
197 |
+
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
|
198 |
+
trepa_loss_func = TREPALoss(device=device)
|
199 |
+
|
200 |
+
# Validation pipeline
|
201 |
+
pipeline = LipsyncPipeline(
|
202 |
+
vae=vae,
|
203 |
+
audio_encoder=audio_encoder,
|
204 |
+
unet=unet,
|
205 |
+
scheduler=noise_scheduler,
|
206 |
+
).to(device)
|
207 |
+
pipeline.set_progress_bar_config(disable=True)
|
208 |
+
|
209 |
+
# DDP warpper
|
210 |
+
unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)
|
211 |
+
|
212 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
213 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
214 |
+
# Afterwards we recalculate our number of training epochs
|
215 |
+
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
|
216 |
+
|
217 |
+
# Train!
|
218 |
+
total_batch_size = config.data.batch_size * num_processes
|
219 |
+
|
220 |
+
if is_main_process:
|
221 |
+
logger.info("***** Running training *****")
|
222 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
223 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
224 |
+
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
|
225 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
226 |
+
logger.info(f" Total optimization steps = {config.run.max_train_steps}")
|
227 |
+
global_step = resume_global_step
|
228 |
+
first_epoch = resume_global_step // num_update_steps_per_epoch
|
229 |
+
|
230 |
+
# Only show the progress bar once on each machine.
|
231 |
+
progress_bar = tqdm(
|
232 |
+
range(0, config.run.max_train_steps),
|
233 |
+
initial=resume_global_step,
|
234 |
+
desc="Steps",
|
235 |
+
disable=not is_main_process,
|
236 |
+
)
|
237 |
+
|
238 |
+
train_step_list = []
|
239 |
+
sync_loss_list = []
|
240 |
+
recon_loss_list = []
|
241 |
+
|
242 |
+
val_step_list = []
|
243 |
+
sync_conf_list = []
|
244 |
+
|
245 |
+
# Support mixed-precision training
|
246 |
+
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
|
247 |
+
|
248 |
+
for epoch in range(first_epoch, num_train_epochs):
|
249 |
+
train_dataloader.sampler.set_epoch(epoch)
|
250 |
+
unet.train()
|
251 |
+
|
252 |
+
for step, batch in enumerate(train_dataloader):
|
253 |
+
### >>>> Training >>>> ###
|
254 |
+
|
255 |
+
if config.model.add_audio_layer:
|
256 |
+
if batch["mel"] != []:
|
257 |
+
mel = batch["mel"].to(device, dtype=torch.float16)
|
258 |
+
|
259 |
+
audio_embeds_list = []
|
260 |
+
try:
|
261 |
+
for idx in range(len(batch["video_path"])):
|
262 |
+
video_path = batch["video_path"][idx]
|
263 |
+
start_idx = batch["start_idx"][idx]
|
264 |
+
|
265 |
+
with torch.no_grad():
|
266 |
+
audio_feat = audio_encoder.audio2feat(video_path)
|
267 |
+
audio_embeds = audio_encoder.crop_overlap_audio_window(audio_feat, start_idx)
|
268 |
+
audio_embeds_list.append(audio_embeds)
|
269 |
+
except Exception as e:
|
270 |
+
logger.info(f"{type(e).__name__} - {e} - {video_path}")
|
271 |
+
continue
|
272 |
+
audio_embeds = torch.stack(audio_embeds_list) # (B, 16, 50, 384)
|
273 |
+
audio_embeds = audio_embeds.to(device, dtype=torch.float16)
|
274 |
+
else:
|
275 |
+
audio_embeds = None
|
276 |
+
|
277 |
+
# Convert videos to latent space
|
278 |
+
gt_images = batch["gt"].to(device, dtype=torch.float16)
|
279 |
+
gt_masked_images = batch["masked_gt"].to(device, dtype=torch.float16)
|
280 |
+
mask = batch["mask"].to(device, dtype=torch.float16)
|
281 |
+
ref_images = batch["ref"].to(device, dtype=torch.float16)
|
282 |
+
|
283 |
+
gt_images = rearrange(gt_images, "b f c h w -> (b f) c h w")
|
284 |
+
gt_masked_images = rearrange(gt_masked_images, "b f c h w -> (b f) c h w")
|
285 |
+
mask = rearrange(mask, "b f c h w -> (b f) c h w")
|
286 |
+
ref_images = rearrange(ref_images, "b f c h w -> (b f) c h w")
|
287 |
+
|
288 |
+
with torch.no_grad():
|
289 |
+
gt_latents = vae.encode(gt_images).latent_dist.sample()
|
290 |
+
gt_masked_images = vae.encode(gt_masked_images).latent_dist.sample()
|
291 |
+
ref_images = vae.encode(ref_images).latent_dist.sample()
|
292 |
+
|
293 |
+
mask = torch.nn.functional.interpolate(mask, size=config.data.resolution // vae_scale_factor)
|
294 |
+
|
295 |
+
gt_latents = (
|
296 |
+
rearrange(gt_latents, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
|
297 |
+
) * vae.config.scaling_factor
|
298 |
+
gt_masked_images = (
|
299 |
+
rearrange(gt_masked_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
|
300 |
+
- vae.config.shift_factor
|
301 |
+
) * vae.config.scaling_factor
|
302 |
+
ref_images = (
|
303 |
+
rearrange(ref_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
|
304 |
+
) * vae.config.scaling_factor
|
305 |
+
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=config.data.num_frames)
|
306 |
+
|
307 |
+
# Sample noise that we'll add to the latents
|
308 |
+
if config.run.use_mixed_noise:
|
309 |
+
# Refer to the paper: https://arxiv.org/abs/2305.10474
|
310 |
+
noise_shared_std_dev = (config.run.mixed_noise_alpha**2 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
|
311 |
+
noise_shared = torch.randn_like(gt_latents) * noise_shared_std_dev
|
312 |
+
noise_shared = noise_shared[:, :, 0:1].repeat(1, 1, config.data.num_frames, 1, 1)
|
313 |
+
|
314 |
+
noise_ind_std_dev = (1 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
|
315 |
+
noise_ind = torch.randn_like(gt_latents) * noise_ind_std_dev
|
316 |
+
noise = noise_ind + noise_shared
|
317 |
+
else:
|
318 |
+
noise = torch.randn_like(gt_latents)
|
319 |
+
noise = noise[:, :, 0:1].repeat(
|
320 |
+
1, 1, config.data.num_frames, 1, 1
|
321 |
+
) # Using the same noise for all frames, refer to the paper: https://arxiv.org/abs/2308.09716
|
322 |
+
|
323 |
+
bsz = gt_latents.shape[0]
|
324 |
+
|
325 |
+
# Sample a random timestep for each video
|
326 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device)
|
327 |
+
timesteps = timesteps.long()
|
328 |
+
|
329 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
330 |
+
# (this is the forward diffusion process)
|
331 |
+
noisy_tensor = noise_scheduler.add_noise(gt_latents, noise, timesteps)
|
332 |
+
|
333 |
+
# Get the target for loss depending on the prediction type
|
334 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
335 |
+
target = noise
|
336 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
337 |
+
raise NotImplementedError
|
338 |
+
else:
|
339 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
340 |
+
|
341 |
+
unet_input = torch.cat([noisy_tensor, mask, gt_masked_images, ref_images], dim=1)
|
342 |
+
|
343 |
+
# Predict the noise and compute loss
|
344 |
+
# Mixed-precision training
|
345 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
|
346 |
+
pred_noise = unet(unet_input, timesteps, encoder_hidden_states=audio_embeds).sample
|
347 |
+
|
348 |
+
if config.run.recon_loss_weight != 0:
|
349 |
+
recon_loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
|
350 |
+
else:
|
351 |
+
recon_loss = 0
|
352 |
+
|
353 |
+
pred_latents = reversed_forward(noise_scheduler, pred_noise, timesteps, noisy_tensor)
|
354 |
+
|
355 |
+
if config.run.pixel_space_supervise:
|
356 |
+
pred_images = vae.decode(
|
357 |
+
rearrange(pred_latents, "b c f h w -> (b f) c h w") / vae.config.scaling_factor
|
358 |
+
+ vae.config.shift_factor
|
359 |
+
).sample
|
360 |
+
|
361 |
+
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
|
362 |
+
pred_images_perceptual = pred_images[:, :, pred_images.shape[2] // 2 :, :]
|
363 |
+
gt_images_perceptual = gt_images[:, :, gt_images.shape[2] // 2 :, :]
|
364 |
+
lpips_loss = lpips_loss_func(pred_images_perceptual.float(), gt_images_perceptual.float()).mean()
|
365 |
+
else:
|
366 |
+
lpips_loss = 0
|
367 |
+
|
368 |
+
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
|
369 |
+
trepa_pred_images = rearrange(pred_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
|
370 |
+
trepa_gt_images = rearrange(gt_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
|
371 |
+
trepa_loss = trepa_loss_func(trepa_pred_images, trepa_gt_images)
|
372 |
+
else:
|
373 |
+
trepa_loss = 0
|
374 |
+
|
375 |
+
if config.model.add_audio_layer and config.run.use_syncnet:
|
376 |
+
if config.run.pixel_space_supervise:
|
377 |
+
syncnet_input = rearrange(pred_images, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
|
378 |
+
else:
|
379 |
+
syncnet_input = rearrange(pred_latents, "b c f h w -> b (f c) h w")
|
380 |
+
|
381 |
+
if syncnet_config.data.lower_half:
|
382 |
+
height = syncnet_input.shape[2]
|
383 |
+
syncnet_input = syncnet_input[:, :, height // 2 :, :]
|
384 |
+
ones_tensor = torch.ones((config.data.batch_size, 1)).float().to(device=device)
|
385 |
+
vision_embeds, audio_embeds = syncnet(syncnet_input, mel)
|
386 |
+
sync_loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), ones_tensor).mean()
|
387 |
+
sync_loss_list.append(gather_loss(sync_loss, device))
|
388 |
+
else:
|
389 |
+
sync_loss = 0
|
390 |
+
|
391 |
+
loss = (
|
392 |
+
recon_loss * config.run.recon_loss_weight
|
393 |
+
+ sync_loss * config.run.sync_loss_weight
|
394 |
+
+ lpips_loss * config.run.perceptual_loss_weight
|
395 |
+
+ trepa_loss * config.run.trepa_loss_weight
|
396 |
+
)
|
397 |
+
|
398 |
+
train_step_list.append(global_step)
|
399 |
+
if config.run.recon_loss_weight != 0:
|
400 |
+
recon_loss_list.append(gather_loss(recon_loss, device))
|
401 |
+
|
402 |
+
optimizer.zero_grad()
|
403 |
+
|
404 |
+
# Backpropagate
|
405 |
+
if config.run.mixed_precision_training:
|
406 |
+
scaler.scale(loss).backward()
|
407 |
+
""" >>> gradient clipping >>> """
|
408 |
+
scaler.unscale_(optimizer)
|
409 |
+
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
|
410 |
+
""" <<< gradient clipping <<< """
|
411 |
+
scaler.step(optimizer)
|
412 |
+
scaler.update()
|
413 |
+
else:
|
414 |
+
loss.backward()
|
415 |
+
""" >>> gradient clipping >>> """
|
416 |
+
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
|
417 |
+
""" <<< gradient clipping <<< """
|
418 |
+
optimizer.step()
|
419 |
+
|
420 |
+
# Check the grad of attn blocks for debugging
|
421 |
+
# print(unet.module.up_blocks[3].attentions[2].transformer_blocks[0].audio_cross_attn.attn.to_q.weight.grad)
|
422 |
+
|
423 |
+
lr_scheduler.step()
|
424 |
+
progress_bar.update(1)
|
425 |
+
global_step += 1
|
426 |
+
|
427 |
+
### <<<< Training <<<< ###
|
428 |
+
|
429 |
+
# Save checkpoint and conduct validation
|
430 |
+
if is_main_process and (global_step % config.ckpt.save_ckpt_steps == 0):
|
431 |
+
if config.run.recon_loss_weight != 0:
|
432 |
+
plot_loss_chart(
|
433 |
+
os.path.join(output_dir, f"loss_charts/recon_loss_chart-{global_step}.png"),
|
434 |
+
("Reconstruction loss", train_step_list, recon_loss_list),
|
435 |
+
)
|
436 |
+
if config.model.add_audio_layer:
|
437 |
+
if sync_loss_list != []:
|
438 |
+
plot_loss_chart(
|
439 |
+
os.path.join(output_dir, f"loss_charts/sync_loss_chart-{global_step}.png"),
|
440 |
+
("Sync loss", train_step_list, sync_loss_list),
|
441 |
+
)
|
442 |
+
model_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
|
443 |
+
state_dict = {
|
444 |
+
"global_step": global_step,
|
445 |
+
"state_dict": unet.module.state_dict(), # to unwrap DDP
|
446 |
+
}
|
447 |
+
try:
|
448 |
+
torch.save(state_dict, model_save_path)
|
449 |
+
logger.info(f"Saved checkpoint to {model_save_path}")
|
450 |
+
except Exception as e:
|
451 |
+
logger.error(f"Error saving model: {e}")
|
452 |
+
|
453 |
+
# Validation
|
454 |
+
logger.info("Running validation... ")
|
455 |
+
|
456 |
+
validation_video_out_path = os.path.join(output_dir, f"val_videos/val_video_{global_step}.mp4")
|
457 |
+
validation_video_mask_path = os.path.join(output_dir, f"val_videos/val_video_mask.mp4")
|
458 |
+
|
459 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
460 |
+
pipeline(
|
461 |
+
config.data.val_video_path,
|
462 |
+
config.data.val_audio_path,
|
463 |
+
validation_video_out_path,
|
464 |
+
validation_video_mask_path,
|
465 |
+
num_frames=config.data.num_frames,
|
466 |
+
num_inference_steps=config.run.inference_steps,
|
467 |
+
guidance_scale=config.run.guidance_scale,
|
468 |
+
weight_dtype=torch.float16,
|
469 |
+
width=config.data.resolution,
|
470 |
+
height=config.data.resolution,
|
471 |
+
mask=config.data.mask,
|
472 |
+
)
|
473 |
+
|
474 |
+
logger.info(f"Saved validation video output to {validation_video_out_path}")
|
475 |
+
|
476 |
+
val_step_list.append(global_step)
|
477 |
+
|
478 |
+
if config.model.add_audio_layer:
|
479 |
+
try:
|
480 |
+
_, conf = syncnet_eval(syncnet_eval_model, syncnet_detector, validation_video_out_path, "temp")
|
481 |
+
except Exception as e:
|
482 |
+
logger.info(e)
|
483 |
+
conf = 0
|
484 |
+
sync_conf_list.append(conf)
|
485 |
+
plot_loss_chart(
|
486 |
+
os.path.join(output_dir, f"loss_charts/sync_conf_chart-{global_step}.png"),
|
487 |
+
("Sync confidence", val_step_list, sync_conf_list),
|
488 |
+
)
|
489 |
+
|
490 |
+
logs = {"step_loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0]}
|
491 |
+
progress_bar.set_postfix(**logs)
|
492 |
+
|
493 |
+
if global_step >= config.run.max_train_steps:
|
494 |
+
break
|
495 |
+
|
496 |
+
progress_bar.close()
|
497 |
+
dist.destroy_process_group()
|
498 |
+
|
499 |
+
|
500 |
+
if __name__ == "__main__":
|
501 |
+
parser = argparse.ArgumentParser()
|
502 |
+
|
503 |
+
# Config file path
|
504 |
+
parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")
|
505 |
+
|
506 |
+
args = parser.parse_args()
|
507 |
+
config = OmegaConf.load(args.unet_config_path)
|
508 |
+
config.unet_config_path = args.unet_config_path
|
509 |
+
|
510 |
+
main(config)
|