FIsh / fish_speech /inference_engine /reference_loader.py
samarth2002's picture
files added
5fc76ef
import io
from hashlib import sha256
from pathlib import Path
from typing import Callable, Literal, Tuple
import torch
import torchaudio
from loguru import logger
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from fish_speech.utils.file import (
AUDIO_EXTENSIONS,
audio_to_bytes,
list_files,
read_ref_text,
)
from fish_speech.utils.schema import ServeReferenceAudio
class ReferenceLoader:
def __init__(self) -> None:
"""
Component of the TTSInferenceEngine class.
Loads and manages the cache for the reference audio and text.
"""
self.ref_by_id: dict = {}
self.ref_by_hash: dict = {}
# Make Pylance happy (attribut/method not defined...)
self.decoder_model: FireflyArchitecture
self.encode_reference: Callable
# Define the torchaudio backend
backends = torchaudio.list_audio_backends()
if "ffmpeg" in backends:
self.backend = "ffmpeg"
else:
self.backend = "soundfile"
def load_by_id(
self,
id: str,
use_cache: Literal["on", "off"],
) -> Tuple:
# Load the references audio and text by id
ref_folder = Path("references") / id
ref_folder.mkdir(parents=True, exist_ok=True)
ref_audios = list_files(
ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False
)
if use_cache == "off" or id not in self.ref_by_id:
# If the references are not already loaded, encode them
prompt_tokens = [
self.encode_reference(
# decoder_model=self.decoder_model,
reference_audio=audio_to_bytes(str(ref_audio)),
enable_reference_audio=True,
)
for ref_audio in ref_audios
]
prompt_texts = [
read_ref_text(str(ref_audio.with_suffix(".lab")))
for ref_audio in ref_audios
]
self.ref_by_id[id] = (prompt_tokens, prompt_texts)
else:
# Reuse already encoded references
logger.info("Use same references")
prompt_tokens, prompt_texts = self.ref_by_id[id]
return prompt_tokens, prompt_texts
def load_by_hash(
self,
references: list[ServeReferenceAudio],
use_cache: Literal["on", "off"],
) -> Tuple:
# Load the references audio and text by hash
audio_hashes = [sha256(ref.audio).hexdigest() for ref in references]
cache_used = False
prompt_tokens, prompt_texts = [], []
for i, ref in enumerate(references):
if use_cache == "off" or audio_hashes[i] not in self.ref_by_hash:
# If the references are not already loaded, encode them
prompt_tokens.append(
self.encode_reference(
reference_audio=ref.audio,
enable_reference_audio=True,
)
)
prompt_texts.append(ref.text)
self.ref_by_hash[audio_hashes[i]] = (prompt_tokens, prompt_texts)
else:
# Reuse already encoded references
prompt_tokens, prompt_texts = self.ref_by_hash[audio_hashes[i]]
cache_used = True
if cache_used:
logger.info("Use same references")
return prompt_tokens, prompt_texts
def load_audio(self, reference_audio, sr):
"""
Load the audio data from a file or bytes.
"""
if len(reference_audio) > 255 or not Path(reference_audio).exists():
audio_data = reference_audio
reference_audio = io.BytesIO(audio_data)
waveform, original_sr = torchaudio.load(reference_audio, backend=self.backend)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if original_sr != sr:
resampler = torchaudio.transforms.Resample(
orig_freq=original_sr, new_freq=sr
)
waveform = resampler(waveform)
audio = waveform.squeeze().numpy()
return audio