Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,45 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
# Load the Spider dataset
|
6 |
-
spider_dataset = load_dataset("spider", split='train
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
if index < 0 or index >= len(spider_dataset):
|
16 |
-
return "Invalid index. Please enter a number between 0 and {}.".format(len(spider_dataset) - 1), ""
|
17 |
|
18 |
-
|
19 |
-
|
20 |
input_text = "translate English to SQL: " + query
|
21 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
22 |
outputs = model.generate(**inputs, max_length=512)
|
23 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Create a Gradio interface
|
27 |
interface = gr.Interface(
|
28 |
-
fn=
|
29 |
-
inputs=gr.
|
30 |
-
outputs=
|
31 |
title="NL to SQL with T5 using Spider Dataset",
|
32 |
-
description="This model
|
33 |
)
|
34 |
|
35 |
# Launch the app
|
|
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
# Load the Spider dataset
|
6 |
+
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
7 |
|
8 |
+
# Extract schema information from the Spider dataset
|
9 |
+
table_names = set()
|
10 |
+
column_names = set()
|
11 |
+
for item in spider_dataset:
|
12 |
+
for table in item['db']['table_names_original']:
|
13 |
+
table_names.add(table)
|
14 |
+
for column in item['db']['column_names_original']:
|
15 |
+
column_names.add(column[1])
|
16 |
|
17 |
+
# Load tokenizer and model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
|
|
|
|
20 |
|
21 |
+
def generate_sql_from_user_input(query):
|
22 |
+
# Generate SQL for the user's query
|
23 |
input_text = "translate English to SQL: " + query
|
24 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
25 |
outputs = model.generate(**inputs, max_length=512)
|
26 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
# Post-process the SQL query to match the dataset's schema
|
29 |
+
for table_name in table_names:
|
30 |
+
if "TABLE" in sql_query:
|
31 |
+
sql_query = sql_query.replace("TABLE", table_name)
|
32 |
+
break # Assuming only one table is referenced in the query
|
33 |
+
for column_name in column_names:
|
34 |
+
if "COLUMN" in sql_query:
|
35 |
+
sql_query = sql_query.replace("COLUMN", column_name, 1)
|
36 |
+
return sql_query
|
37 |
|
38 |
# Create a Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
+
fn=generate_sql_from_user_input,
|
41 |
+
inputs=gr.Textbox(label="Enter your natural language query"),
|
42 |
+
outputs=gr.Textbox(label="Generated SQL Query"),
|
43 |
title="NL to SQL with T5 using Spider Dataset",
|
44 |
+
description="This model generates an SQL query for your natural language input based on the Spider dataset."
|
45 |
)
|
46 |
|
47 |
# Launch the app
|