zach
Add Dockerfile and .dockerignore, update server_name arg for gradio launch
9100090
raw
history blame
20.1 kB
"""
app.py
Gradio UI for interacting with the Anthropic API, Hume TTS API, and ElevenLabs TTS API.
Users enter a character description, which is processed using Claude by Anthropic to generate text.
The text is then synthesized into speech using different TTS provider APIs.
Users can compare the outputs and vote for their favorite in an interactive UI.
"""
# Standard Library Imports
from concurrent.futures import ThreadPoolExecutor
import json
import random
import time
from typing import Union, Tuple
# Third-Party Library Imports
import gradio as gr
# Local Application Imports
from src.config import AUDIO_DIR, logger
from src import constants
from src.integrations import (
AnthropicError,
ElevenLabsError,
generate_text_with_claude,
HumeError,
text_to_speech_with_elevenlabs,
text_to_speech_with_hume,
)
from src.theme import CustomTheme
from src.types import ComparisonType, OptionMap, VotingResults
from src.utils import validate_character_description_length
def generate_text(
character_description: str,
) -> Tuple[Union[str, gr.update], gr.update]:
"""
Validates the character_description and generates text using Anthropic API.
Args:
character_description (str): The user-provided text for character description.
Returns:
Tuple containing:
- The generated text (as a gr.update).
- An update for the generated text state.
Raises:
gr.Error: On validation or API errors.
"""
try:
validate_character_description_length(character_description)
except ValueError as ve:
logger.warning(f"Validation error: {ve}")
raise gr.Error(str(ve))
try:
generated_text = generate_text_with_claude(character_description)
logger.info(f"Generated text ({len(generated_text)} characters).")
return gr.update(value=generated_text), generated_text
except AnthropicError as ae:
logger.error(f"AnthropicError while generating text: {str(ae)}")
raise gr.Error(
"There was an issue communicating with the Anthropic API. Please try again later."
)
except Exception as e:
logger.error(f"Unexpected error while generating text: {e}")
raise gr.Error("Failed to generate text. Please try again.")
def text_to_speech(
character_description: str, text: str, generated_text_state: str
) -> Tuple[gr.update, gr.update, dict, Union[str, None]]:
"""
Synthesizes two text to speech outputs, loads the two audio players with the
output audio, and updates related UI state components.
- 50% chance to synthesize one Hume and one Elevenlabs output.
- 50% chance to synthesize two Hume outputs.
Args:
character_description (str): The original character_description.
text (str): The text to synthesize to speech.
Returns:
A tuple of:
- Update for first audio player (with autoplay)
- Update for second audio player
- A dictionary mapping options to providers
- The raw audio value for option B
Raises:
gr.Error: On API or unexpected errors.
"""
if not text:
logger.warning("Skipping text-to-speech due to empty text.")
raise gr.Error("Please generate or enter text to synthesize.")
# Hume AI always included in comparison
provider_a = constants.HUME_AI
# If not using generated text, then only compare Hume to Hume
text_modified = text != generated_text_state
provider_b: constants.TTSProviderName = (
constants.HUME_AI if text_modified else random.choice(constants.TTS_PROVIDERS)
)
try:
with ThreadPoolExecutor(max_workers=2) as executor:
future_audio_a = executor.submit(
text_to_speech_with_hume, character_description, text
)
match provider_b:
case constants.HUME_AI:
comparison_type: ComparisonType = constants.HUME_TO_HUME
future_audio_b = executor.submit(
text_to_speech_with_hume, character_description, text
)
case constants.ELEVENLABS:
comparison_type: ComparisonType = constants.HUME_TO_ELEVENLABS
future_audio_b = executor.submit(
text_to_speech_with_elevenlabs, character_description, text
)
case _:
raise ValueError(f"Unsupported provider: {provider_b}")
generation_id_a, audio_a = future_audio_a.result()
generation_id_b, audio_b = future_audio_b.result()
options = [
(provider_a, audio_a, generation_id_a),
(provider_b, audio_b, generation_id_b),
]
random.shuffle(options)
options_map: OptionMap = {
constants.OPTION_A: options[0][0],
constants.OPTION_B: options[1][0],
}
option_a_audio, option_b_audio = options[0][1], options[1][1]
option_a_generation_id, option_b_generation_id = options[0][2], options[1][2]
return (
gr.update(value=option_a_audio, visible=True, autoplay=True),
gr.update(value=option_b_audio, visible=True),
options_map,
option_b_audio,
comparison_type,
option_a_generation_id,
option_b_generation_id,
text_modified,
text,
character_description,
)
except ElevenLabsError as ee:
logger.error(f"ElevenLabsError while synthesizing speech from text: {str(ee)}")
raise gr.Error(
f"There was an issue communicating with the Elevenlabs API. {ee.message} Please try again later."
)
except HumeError as he:
logger.error(f"HumeError while synthesizing speech from text: {str(he)}")
raise gr.Error(
"There was an issue communicating with the Hume API. Please try again later."
)
except Exception as e:
logger.error(f"Unexpected error during TTS generation: {e}")
raise gr.Error("An unexpected error ocurred. Please try again later.")
def vote(
vote_submitted: bool,
option_map: OptionMap,
selected_button: str,
comparison_type: ComparisonType,
option_a_generation_id: str,
option_b_generation_id: str,
text_modified: bool,
character_description: str,
text: str,
) -> Tuple[bool, gr.update, gr.update, gr.update]:
"""
Handles user voting.
Args:
vote_submitted (bool): True if a vote was already submitted.
option_map (OptionMap): A dictionary mapping option labels to their details.
Expected structure:
{
'Option A': 'Hume AI',
'Option B': 'ElevenLabs',
}
selected_button (str): The button that was clicked.
Returns:
A tuple of:
- A boolean indicating if the vote was accepted.
- An update for the selected vote button (showing provider and trophy emoji).
- An update for the unselected vote button (showing provider).
- An update for enabling vote interactions.
"""
if not option_map or vote_submitted:
return gr.skip(), gr.skip(), gr.skip(), gr.skip()
option_a_selected = selected_button == constants.VOTE_FOR_OPTION_A
selected_option, other_option = (
(constants.OPTION_A, constants.OPTION_B)
if option_a_selected
else (constants.OPTION_B, constants.OPTION_A)
)
selected_provider = option_map.get(selected_option)
other_provider = option_map.get(other_option)
# Build button labels, displaying the provider and voice name, appending the trophy emoji to the selected option.
selected_label = f"{selected_provider} {constants.TROPHY_EMOJI}"
other_label = f"{other_provider}"
# Report voting results to be persisted to results DB
voting_results: VotingResults = {
"comparison_type": comparison_type,
"winning_provider": selected_provider,
"winning_option": selected_option,
"option_a_provider": option_map.get(constants.OPTION_A),
"option_b_provider": option_map.get(constants.OPTION_B),
"option_a_generation_id": option_a_generation_id,
"option_b_generation_id": option_b_generation_id,
"character_description": character_description,
"text": text,
"is_custom_text": text_modified,
}
# TODO: Currently logging the results until we hook the API for writing results to DB
logger.info("Voting results:\n%s", json.dumps(voting_results, indent=4))
return (
True,
(
gr.update(value=selected_label, variant="primary", interactive=False)
if option_a_selected
else gr.update(value=other_label, variant="secondary", interactive=False)
),
(
gr.update(value=other_label, variant="secondary", interactive=False)
if option_a_selected
else gr.update(value=selected_label, variant="primary", interactive=False)
),
gr.update(interactive=True),
)
def reset_ui() -> Tuple[gr.update, gr.update, gr.update, gr.update, None, None, bool]:
"""
Resets UI state before generating new text.
Returns:
A tuple of updates for:
- option_a_audio_player (clear audio)
- option_b_audio_player (clear audio)
- vote_button_a (disable and reset button text)
- vote_button_a (disable and reset button text)
- option_map_state (reset option map state)
- option_b_audio_state (reset option B audio state)
- vote_submitted_state (reset submitted vote state)
"""
return (
gr.update(value=None),
gr.update(value=None, autoplay=False),
gr.update(value=constants.VOTE_FOR_OPTION_A, variant="secondary"),
gr.update(value=constants.VOTE_FOR_OPTION_B, variant="secondary"),
None,
None,
False,
)
def build_input_section() -> Tuple[gr.Markdown, gr.Dropdown, gr.Textbox, gr.Button]:
"""Builds the input section including instructions, sample character description dropdown, character description input, and generate button"""
instructions = gr.Markdown(
"""
1. **Enter or Generate Text:** Type directly in the text box—or enter a character description and click “Generate Text” to auto-populate. Edit as needed.
2. **Synthesize Speech:** Click “Synthesize Speech” to generate two audio outputs.
3. **Listen & Compare:** Play back both audio options to hear the differences.
4. **Vote for Your Favorite:** Click “Vote for Option A” or “Vote for Option B” to cast your vote.
"""
)
sample_character_description_dropdown = gr.Dropdown(
choices=list(constants.SAMPLE_CHARACTER_DESCRIPTIONS.keys()),
label="Choose a sample character description (or enter your own)",
value=None,
interactive=True,
)
character_description_input = gr.Textbox(
label="Character description",
placeholder="Enter your character description to be used to generate text and a novel voice...",
lines=3,
max_lines=8,
max_length=constants.CHARACTER_DESCRIPTION_MAX_LENGTH,
show_copy_button=True,
)
generate_text_button = gr.Button("Generate text", variant="secondary")
return (
instructions,
sample_character_description_dropdown,
character_description_input,
generate_text_button,
)
def build_output_section() -> (
Tuple[gr.Textbox, gr.Button, gr.Audio, gr.Audio, gr.Button, gr.Button]
):
"""Builds the output section including generated text, audio players, and vote buttons."""
text_input = gr.Textbox(
label="Text",
placeholder="Enter text to synthesize speech...",
interactive=True,
autoscroll=False,
lines=3,
max_lines=8,
max_length=constants.CHARACTER_DESCRIPTION_MAX_LENGTH,
show_copy_button=True,
)
synthesize_speech_button = gr.Button("Synthesize speech", variant="primary")
with gr.Row(equal_height=True):
option_a_audio_player = gr.Audio(
label=constants.OPTION_A, type="filepath", interactive=False
)
option_b_audio_player = gr.Audio(
label=constants.OPTION_B, type="filepath", interactive=False
)
with gr.Row(equal_height=True):
vote_button_a = gr.Button(constants.VOTE_FOR_OPTION_A, interactive=False)
vote_button_b = gr.Button(constants.VOTE_FOR_OPTION_B, interactive=False)
return (
text_input,
synthesize_speech_button,
option_a_audio_player,
option_b_audio_player,
vote_button_a,
vote_button_b,
)
def build_gradio_interface() -> gr.Blocks:
"""
Builds and configures the Gradio user interface.
Returns:
gr.Blocks: The fully constructed Gradio UI layout.
"""
custom_theme = CustomTheme()
with gr.Blocks(
title="Expressive TTS Arena",
theme=custom_theme,
fill_width=True,
css_paths="src/assets/styles.css",
) as demo:
# Title
gr.Markdown("# Expressive TTS Arena")
# Build generate text section
(
instructions,
sample_character_description_dropdown,
character_description_input,
generate_text_button,
) = build_input_section()
# Build synthesize speech section
(
text_input,
synthesize_speech_button,
option_a_audio_player,
option_b_audio_player,
vote_button_a,
vote_button_b,
) = build_output_section()
# --- UI state components ---
# Track text used for speech synthesis
text_state = gr.State("")
# Track character description used for text and voice generation
character_description_state = gr.State("")
# Track comparison type (which set of providers are being compared)
comparison_type_state = gr.State()
# Track generation ID for Option A
option_a_generation_id_state = gr.State()
# Track generation ID for Option B
option_b_generation_id_state = gr.State()
# Track whether text that was used was generated or modified/custom
text_modified_state = gr.State()
# Track generated text state
generated_text_state = gr.State("")
# Track generated audio for option B for playing automatically after option 1 audio finishes
option_b_audio_state = gr.State()
# Track option map (option A and option B are randomized)
option_map_state = gr.State()
# Track whether the user has voted for an option
vote_submitted_state = gr.State(False)
# --- Register event handlers ---
# When a sample character description is chosen, update the character description textbox
sample_character_description_dropdown.change(
fn=lambda choice: constants.SAMPLE_CHARACTER_DESCRIPTIONS.get(choice, ""),
inputs=[sample_character_description_dropdown],
outputs=[character_description_input],
)
# Generate text button click handler chain:
# 1. Disable the "Generate text" button
# 2. Generate text
# 3. Enable the "Generate text" button
generate_text_button.click(
fn=lambda: gr.update(interactive=False),
inputs=[],
outputs=[generate_text_button],
).then(
fn=generate_text,
inputs=[character_description_input],
outputs=[text_input, generated_text_state],
).then(
fn=lambda: gr.update(interactive=True),
inputs=[],
outputs=[generate_text_button],
)
# Synthesize speech button click event handler chain:
# 1. Disable the "Synthesize speech" button
# 2. Reset UI state
# 3. Synthesize speech, load audio players, and display vote button
# 4. Enable the "Synthesize speech" button and display vote buttons
synthesize_speech_button.click(
fn=lambda: (
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
),
inputs=[],
outputs=[synthesize_speech_button, vote_button_a, vote_button_b],
).then(
fn=reset_ui,
inputs=[],
outputs=[
option_a_audio_player,
option_b_audio_player,
vote_button_a,
vote_button_b,
option_map_state,
option_b_audio_state,
vote_submitted_state,
],
).then(
fn=text_to_speech,
inputs=[character_description_input, text_input, generated_text_state],
outputs=[
option_a_audio_player,
option_b_audio_player,
option_map_state,
option_b_audio_state,
comparison_type_state,
option_a_generation_id_state,
option_b_generation_id_state,
text_modified_state,
text_state,
character_description_state,
],
).then(
fn=lambda: (
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
),
inputs=[],
outputs=[synthesize_speech_button, vote_button_a, vote_button_b],
)
# Vote button click event handlers
vote_button_a.click(
fn=vote,
inputs=[
vote_submitted_state,
option_map_state,
vote_button_a,
comparison_type_state,
option_a_generation_id_state,
option_b_generation_id_state,
text_modified_state,
character_description_state,
text_state,
],
outputs=[
vote_submitted_state,
vote_button_a,
vote_button_b,
synthesize_speech_button,
],
)
vote_button_b.click(
fn=vote,
inputs=[
vote_submitted_state,
option_map_state,
vote_button_b,
comparison_type_state,
option_a_generation_id_state,
option_b_generation_id_state,
text_modified_state,
character_description_state,
text_state,
],
outputs=[
vote_submitted_state,
vote_button_a,
vote_button_b,
synthesize_speech_button,
],
)
# Reload audio player B with audio and set autoplay to True (workaround to play audio back-to-back)
option_a_audio_player.stop(
fn=lambda current_audio_path: gr.update(
value=f"{current_audio_path}?t={int(time.time())}", autoplay=True
),
inputs=[option_b_audio_state],
outputs=[option_b_audio_player],
)
# Enable voting after second audio option playback finishes
option_b_audio_player.stop(
fn=lambda _: (
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(autoplay=False),
),
inputs=[],
outputs=[vote_button_a, vote_button_b, option_b_audio_player],
)
logger.debug("Gradio interface built successfully")
return demo
if __name__ == "__main__":
logger.info("Launching TTS Arena Gradio app...")
demo = build_gradio_interface()
demo.launch(server_name="0.0.0.0", allowed_paths=[AUDIO_DIR])