zach
Update how app is served to accomodate adding middleware to edit metatags in head
1f58459
raw
history blame
16.9 kB
"""
utils.py
This file contains utility functions that are shared across the project.
These functions provide reusable logic to simplify code in other modules.
"""
# Standard Library Imports
import base64
import json
import os
import random
import time
from pathlib import Path
from typing import Dict, List, Tuple, cast
# Third-Party Library Imports
from bs4 import BeautifulSoup
from sqlalchemy.ext.asyncio import AsyncSession
# Local Application Imports
from src import constants
from src.config import Config, logger
from src.custom_types import (
ComparisonType,
Option,
OptionKey,
OptionMap,
TTSProviderName,
VotingResults,
)
from src.database import crud
from src.database.database import AsyncDBSessionMaker
def truncate_text(text: str, max_length: int = 50) -> str:
"""
Truncate a string to the specified length, appending ellipses if necessary.
Args:
text (str): The text to truncate.
max_length (int): The maximum length of the truncated string.
Returns:
str: The truncated text.
Examples:
>>> truncate_text("Hello, World!", 5)
'Hello...'
>>> truncate_text("Short string", 20)
'Short string'
>>> truncate_text("Edge case with zero length", 0)
''
"""
if max_length <= 0:
logger.warning(f"Invalid max_length={max_length}. Returning empty string.")
return ""
is_truncated = len(text) > max_length
if is_truncated:
logger.debug(f"Truncated text to {max_length} characters.")
return text[:max_length] + ("..." if is_truncated else "")
def validate_character_description_length(character_description: str) -> None:
"""
Validates that a voice description is within specified minimum and maximum length limits.
Args:
character_description (str): The input character description to validate.
Raises:
ValueError: If the character description is empty, too short, or exceeds max length.
"""
stripped_character_description = character_description.strip()
character_description_length = len(stripped_character_description)
logger.debug(f"Voice description length being validated: {character_description_length} characters")
if character_description_length < constants.CHARACTER_DESCRIPTION_MIN_LENGTH:
raise ValueError(
f"Your character description is too short. Please enter at least "
f"{constants.CHARACTER_DESCRIPTION_MIN_LENGTH} characters. "
f"(Current length: {character_description_length})"
)
if character_description_length > constants.CHARACTER_DESCRIPTION_MAX_LENGTH:
raise ValueError(
f"Your character description is too long. Please limit it to "
f"{constants.CHARACTER_DESCRIPTION_MAX_LENGTH} characters. "
f"(Current length: {character_description_length})"
)
truncated_description = truncate_text(stripped_character_description)
logger.debug(f"Character description length validation passed for character_description: {truncated_description}")
def validate_text_length(text: str) -> None:
"""
Validates that a text input is within specified minimum and maximum length limits.
Args:
text (str): The input text to validate.
Raises:
ValueError: If the text is empty, too short, or exceeds max length.
"""
stripped_text = text.strip()
text_length = len(stripped_text)
logger.debug(f"Voice description length being validated: {text_length} characters")
if text_length < constants.TEXT_MIN_LENGTH:
raise ValueError(
f"Your text is too short. Please enter at least "
f"{constants.TEXT_MIN_LENGTH} characters. "
f"(Current length: {text_length})"
)
if text_length > constants.TEXT_MAX_LENGTH:
raise ValueError(
f"Your text is too long. Please limit it to "
f"{constants.TEXT_MAX_LENGTH} characters. "
f"(Current length: {text_length})"
)
truncated_text = truncate_text(stripped_text)
logger.debug(f"Character description length validation passed for text: {truncated_text}")
def _delete_files_older_than(directory: Path, minutes: int = 30) -> None:
"""
Delete all files in the specified directory that are older than a given number of minutes.
This function checks each file in the given directory and removes it if its last modification
time is older than the specified threshold. By default, the threshold is set to 30 minutes.
Args:
directory (str): The path to the directory where files will be checked and possibly deleted.
minutes (int, optional): The age threshold in minutes. Files older than this will be deleted.
Defaults to 30 minutes.
Returns: None
"""
# Get the current time in seconds since the epoch.
now = time.time()
# Convert the minutes threshold to seconds.
cutoff = now - (minutes * 60)
dir_path = Path(directory)
# Iterate over all files in the directory.
for file_path in dir_path.iterdir():
if file_path.is_file():
file_mod_time = file_path.stat().st_mtime
# If the file's modification time is older than the cutoff, delete it.
if file_mod_time < cutoff:
try:
file_path.unlink()
logger.info(f"Deleted: {file_path}")
except Exception as e:
logger.exception(f"Error deleting {file_path}: {e}")
def save_base64_audio_to_file(base64_audio: str, filename: str, config: Config) -> str:
"""
Decode a base64-encoded audio string and write the resulting binary data to a file
within the preconfigured AUDIO_DIR directory. Prior to writing the bytes to an audio
file, all files within the directory that are more than 30 minutes old are deleted.
This function verifies the file was created, logs both the absolute and relative
file paths, and returns a path relative to the current working directory
(as required by Gradio for serving static files).
Args:
base64_audio (str): The base64-encoded string representing the audio data.
filename (str): The name of the file (including extension, e.g.,
'b4a335da-9786-483a-b0a5-37e6e4ad5fd1.mp3') where the decoded
audio will be saved.
Returns:
str: The relative file path to the saved audio file.
Raises:
FileNotFoundError: If the audio file was not created.
"""
audio_bytes = base64.b64decode(base64_audio)
file_path = Path(config.audio_dir) / filename
num_minutes = 30
_delete_files_older_than(config.audio_dir, num_minutes)
# Write the binary audio data to the file.
with file_path.open("wb") as audio_file:
audio_file.write(audio_bytes)
# Verify that the file was created.
if not file_path.exists():
raise FileNotFoundError(f"Audio file was not created at {file_path}")
# Compute a relative path for Gradio to serve (relative to the current working directory).
relative_path = file_path.relative_to(Path.cwd())
logger.debug(f"Audio file absolute path: {file_path}")
logger.debug(f"Audio file relative path: {relative_path}")
return str(relative_path)
def get_random_provider(text_modified: bool) -> TTSProviderName:
"""
Select a TTS provider based on whether the text has been modified.
Args:
text_modified (bool): A flag indicating whether the text has been modified.
Returns:
provider: A TTS provider selected based on the following criteria:
- If the text has been modified, it will be "Hume AI"
- Otherwise, it will be "Hume AI" 30% of the time and "ElevenLabs" 70% of the time
"""
if text_modified:
return constants.HUME_AI
return constants.HUME_AI if random.random() < 0.3 else constants.ELEVENLABS
def create_shuffled_tts_options(option_a: Option, option_b: Option) -> OptionMap:
"""
Create and shuffle TTS generation options.
This function accepts two TTS generation options, shuffles them randomly,
and returns an OptionMap with keys 'option_a' and 'option_b' corresponding
to the shuffled options.
Args:
option_a (Option): The first TTS generation option.
option_b (Option): The second TTS generation option.
Returns:
OptionMap: A mapping of shuffled TTS options, where each option includes
its provider, audio file path, and generation ID.
"""
options = [option_a, option_b]
random.shuffle(options)
shuffled_option_a, shuffled_option_b = options
return {
"option_a": {
"provider": shuffled_option_a.provider,
"generation_id": shuffled_option_a.generation_id,
"audio_file_path": shuffled_option_a.audio,
},
"option_b": {
"provider": shuffled_option_b.provider,
"generation_id": shuffled_option_b.generation_id,
"audio_file_path": shuffled_option_b.audio,
},
}
def determine_selected_option(selected_option_button: str) -> Tuple[OptionKey, OptionKey]:
"""
Determines the selected option and the alternative option based on the user's selection.
Args:
selected_option_button (str): The option selected by the user, expected to be either
constants.OPTION_A_KEY or constants.OPTION_B_KEY.
Returns:
tuple: A tuple (selected_option, other_option) where:
- selected_option is the same as the selected_option.
- other_option is the alternative option.
"""
if selected_option_button == constants.SELECT_OPTION_A:
selected_option, other_option = constants.OPTION_A_KEY, constants.OPTION_B_KEY
elif selected_option_button == constants.SELECT_OPTION_B:
selected_option, other_option = constants.OPTION_B_KEY, constants.OPTION_A_KEY
else:
raise ValueError(f"Invalid selected button: {selected_option_button}")
return selected_option, other_option
def _determine_comparison_type(provider_a: TTSProviderName, provider_b: TTSProviderName) -> ComparisonType:
"""
Determine the comparison type based on the given TTS provider names.
If both providers are HUME_AI, the comparison type is HUME_TO_HUME.
If either provider is ELEVENLABS, the comparison type is HUME_TO_ELEVENLABS.
Args:
provider_a (TTSProviderName): The first TTS provider.
provider_b (TTSProviderName): The second TTS provider.
Returns:
ComparisonType: The determined comparison type.
Raises:
ValueError: If the combination of providers is not recognized.
"""
if provider_a == constants.HUME_AI and provider_b == constants.HUME_AI:
return constants.HUME_TO_HUME
if constants.ELEVENLABS in (provider_a, provider_b):
return constants.HUME_TO_ELEVENLABS
raise ValueError(f"Invalid provider combination: {provider_a}, {provider_b}")
def _log_voting_results(voting_results: VotingResults) -> None:
"""Log the full voting results."""
logger.info("Voting results:\n%s", json.dumps(voting_results, indent=4))
async def _persist_vote(db_session_maker: AsyncDBSessionMaker, voting_results: VotingResults, config: Config) -> None:
"""
Asynchronously persist a vote record in the database and handle potential failures.
Designed to work safely in a background task context.
Args:
db_session_maker (AsyncDBSessionMaker): A callable that returns a new async database session.
voting_results (VotingResults): A dictionary containing the details of the vote to persist.
config (Config): The application configuration, used to determine environment-specific behavior.
Returns:
None
"""
# Create session
session = db_session_maker()
is_dummy_session = getattr(session, "is_dummy", False)
if is_dummy_session:
logger.info("Vote record created successfully.")
_log_voting_results(voting_results)
await session.close()
return
try:
await crud.create_vote(cast(AsyncSession, session), voting_results)
logger.info("Vote record created successfully.")
if config.app_env == "dev":
_log_voting_results(voting_results)
except Exception as e:
# Log the error with traceback in production, without traceback in dev
logger.error(f"Failed to create vote record: {e}", exc_info=(config.app_env == "prod"))
_log_voting_results(voting_results)
finally:
# Always ensure the session is closed
await session.close()
async def submit_voting_results(
option_map: OptionMap,
selected_option: OptionKey,
text_modified: bool,
character_description: str,
text: str,
db_session_maker: AsyncDBSessionMaker,
config: Config,
) -> None:
"""
Asynchronously constructs the voting results dictionary and persists a new vote record.
Designed to run as a background task, handling all exceptions internally.
Args:
option_map (OptionMap): Mapping of comparison data and TTS options.
selected_option (OptionKey): The option selected by the user.
text_modified (bool): Indicates whether the text was modified from the original generated text.
character_description (str): Description of the voice/character used for TTS generation.
text (str): The text that was synthesized into speech.
db_session_maker (AsyncDBSessionMaker): Factory function for creating async database sessions.
config (Config): Application configuration containing environment settings.
Returns:
None
"""
try:
provider_a: TTSProviderName = option_map[constants.OPTION_A_KEY]["provider"]
provider_b: TTSProviderName = option_map[constants.OPTION_B_KEY]["provider"]
comparison_type: ComparisonType = _determine_comparison_type(provider_a, provider_b)
voting_results: VotingResults = {
"comparison_type": comparison_type,
"winning_provider": option_map[selected_option]["provider"],
"winning_option": selected_option,
"option_a_provider": provider_a,
"option_b_provider": provider_b,
"option_a_generation_id": option_map[constants.OPTION_A_KEY]["generation_id"],
"option_b_generation_id": option_map[constants.OPTION_B_KEY]["generation_id"],
"character_description": character_description,
"text": text,
"is_custom_text": text_modified,
}
await _persist_vote(db_session_maker, voting_results, config)
# Catch exceptions at the top level of the background task to prevent unhandled exceptions in background tasks
except Exception as e:
logger.error(f"Background task error in submit_voting_results: {e}", exc_info=True)
def validate_env_var(var_name: str) -> str:
"""
Validates that an environment variable is set and returns its value.
Args:
var_name (str): The name of the environment variable to validate.
Returns:
str: The value of the environment variable.
Raises:
ValueError: If the environment variable is not set.
"""
value = os.environ.get(var_name, "")
if not value:
raise ValueError(f"{var_name} is not set. Please ensure it is defined in your environment variables.")
return value
def update_meta_tags(html_content: str, meta_tags: List[Dict[str, str]]) -> str:
"""
Safely updates the HTML content by adding or replacing meta tags in the head section
without affecting other elements, especially scripts and event handlers.
Args:
html_content: The original HTML content as a string
meta_tags: A list of dictionaries with meta tag attributes to add
Returns:
The modified HTML content with updated meta tags
"""
# Parse the HTML
soup = BeautifulSoup(html_content, 'html.parser')
head = soup.head
# Remove existing meta tags that would conflict with our new ones
for meta_tag in meta_tags:
# Determine if we're looking for 'name' or 'property' attribute
attr_type = 'name' if 'name' in meta_tag else 'property'
attr_value = meta_tag.get(attr_type)
# Find and remove existing meta tags with the same name/property
existing_tags = head.find_all('meta', attrs={attr_type: attr_value})
for tag in existing_tags:
tag.decompose()
# Add the new meta tags to the head section
for meta_info in meta_tags:
new_meta = soup.new_tag('meta')
for attr, value in meta_info.items():
new_meta[attr] = value
head.append(new_meta)
return str(soup)