File size: 13,341 Bytes
5ed9749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Standard Library Imports
import hashlib
import json
import time
from typing import List, Optional, Tuple, Union

# Third-Party Library Imports
import gradio as gr

# Local Application Imports
from src.common import logger
from src.core import VotingService


class Leaderboard:
    """
    Manages the state, data fetching, and UI construction for the Leaderboard tab.

    Includes caching and throttling for leaderboard data updates.
    """
    def __init__(self, voting_service: VotingService):
        """
        Initializes the Leaderboard component.

        Args:
            voting_service: The service for voting/leaderboard DB operations.
        """
        self.voting_service = voting_service

        # leaderboard update state
        self.leaderboard_data: List[List[str]] = [[]]
        self.battle_counts_data: List[List[str]] = [[]]
        self.win_rates_data: List[List[str]] = [[]]
        self.leaderboard_cache_hash: Optional[str] = None
        self.last_leaderboard_update_time: float = 0.0
        self.min_refresh_interval: int = 30

    async def _update_leaderboard_data(self, force: bool = False) -> bool:
        """
        Fetches leaderboard data from the source if cache is stale or force=True.

        Updates internal state variables (leaderboard_data, battle_counts_data,
        win_rates_data, cache_hash, last_update_time) if new data is fetched.
        Uses time-based throttling defined by `min_refresh_interval`.

        Args:
            force: If True, bypasses cache hash check and time throttling.

        Returns:
            True if the leaderboard data state was updated, False otherwise.
        """
        current_time = time.time()
        time_since_last_update = current_time - self.last_leaderboard_update_time

        # Skip update if throttled and not forced
        if not force and time_since_last_update < self.min_refresh_interval:
            logger.debug(f"Skipping leaderboard update (throttled): last updated {time_since_last_update:.1f}s ago.")
            return False

        try:
            # Fetch the latest data
            (
                latest_leaderboard_data,
                latest_battle_counts_data,
                latest_win_rates_data
            ) = await self.voting_service.get_formatted_leaderboard_data()

            # Check if data is valid before proceeding
            if not latest_leaderboard_data or not latest_leaderboard_data[0]:
                logger.error("Invalid data received from get_leaderboard_data.")
                return False

            # Generate a hash of the primary leaderboard data to check for changes
            # Use a stable serialization format (sort_keys=True)
            data_str = json.dumps(latest_leaderboard_data, sort_keys=True)
            new_data_hash = hashlib.md5(data_str.encode()).hexdigest()

            # Skip if data hasn't changed and not forced
            if not force and new_data_hash == self.leaderboard_cache_hash:
                logger.debug("Leaderboard data unchanged since last fetch.")
                return False

            # Update the state and cache
            self.leaderboard_data = latest_leaderboard_data
            self.battle_counts_data = latest_battle_counts_data
            self.win_rates_data = latest_win_rates_data
            self.leaderboard_cache_hash = new_data_hash
            self.last_leaderboard_update_time = current_time
            logger.info("Leaderboard data updated successfully.")
            return True

        except Exception as e:
             logger.error(f"Failed to update leaderboard data: {e!s}", exc_info=True)
             return False

    async def refresh_leaderboard(
        self, force: bool = False
    ) -> Tuple[Union[dict, gr.skip], Union[dict, gr.skip], Union[dict, gr.skip]]:
        """
        Refreshes leaderboard data state and returns Gradio updates for the tables.

        Calls `_update_leaderboard_data` and returns updates only if data changed
        or `force` is True. Returns gr.skip() otherwise.

        Args:
            force: If True, forces `_update_leaderboard_data` to bypass throttling/cache.

        Returns:
            A tuple of Gradio update dictionaries for the leaderboard, battle counts,
            and win rates tables, or gr.skip() for each if no update is needed.

        Raises:
            gr.Error: If leaderboard data is empty/invalid after attempting an update.
                      (Changed from previous: now raises only if data is *still* bad)
        """
        data_updated = await self._update_leaderboard_data(force=force)

        if not self.leaderboard_data or not isinstance(self.leaderboard_data[0], list):
            logger.error("Leaderboard data is empty or invalid after update attempt.")
            raise gr.Error("Unable to retrieve leaderboard data. Please refresh the page or try again shortly.")

        if data_updated or force:
            logger.debug("Returning leaderboard table updates.")
            return (
                gr.update(value=self.leaderboard_data),
                gr.update(value=self.battle_counts_data),
                gr.update(value=self.win_rates_data)
            )
        logger.debug("Skipping leaderboard table updates (no data change).")
        return gr.skip(), gr.skip(), gr.skip()

    async def build_leaderboard_section(self) -> Tuple[gr.DataFrame, gr.DataFrame, gr.DataFrame]:
        """
        Constructs the Gradio UI layout for the Leaderboard tab.

        Defines the DataFrames, HTML descriptions, and refresh button logic.

        Returns:
            A tuple containing the Gradio DataFrame components for:
            - Main Leaderboard table
            - Battle Counts table
            - Win Rates table
            These components are needed by the main Frontend class to wire up events.
        """
        logger.debug("Building Leaderboard UI section...")
        # Pre-load leaderboard data before building UI that depends on it
        await self._update_leaderboard_data(force=True)

        # --- UI components ---
        with gr.Row():
            with gr.Column(scale=5):
                gr.HTML(
                    value="""
                    <h2 class="tab-header">πŸ† Leaderboard</h2>
                    <p style="padding-left: 8px;">
                        This leaderboard presents community voting results for different TTS providers, showing which
                        ones users found more expressive and natural-sounding. The win rate reflects how often each
                        provider was selected as the preferred option in head-to-head comparisons. Click the refresh
                        button to see the most up-to-date voting results.
                    </p>
                    """,
                    padding=False,
                )
            refresh_button = gr.Button(
                "↻ Refresh",
                variant="primary",
                elem_classes="refresh-btn",
                scale=1,
            )

        with gr.Column(elem_id="leaderboard-table-container"):
            leaderboard_table = gr.DataFrame(
                headers=["Rank", "Provider", "Model", "Win Rate", "Votes"],
                datatype=["html", "html", "html", "html", "html"],
                column_widths=[80, 300, 180, 120, 116],
                value=self.leaderboard_data,
                min_width=680,
                interactive=False,
                render=True,
                elem_id="leaderboard-table"
            )

        with gr.Column():
            gr.HTML(
                value="""
                <h2 style="padding-top: 12px;" class="tab-header">πŸ“Š Head-to-Head Matchups</h2>
                <p style="padding-left: 8px; width: 80%;">
                    These tables show how each provider performs against others in direct comparisons.
                    The first table shows the total number of comparisons between each pair of providers.
                    The second table shows the win rate (percentage) of the row provider against the column provider.
                </p>
                """,
                padding=False
            )

        with gr.Row(equal_height=True):
            with gr.Column(min_width=420):
                battle_counts_table = gr.DataFrame(
                    headers=["", "Hume AI", "OpenAI", "ElevenLabs"],
                    datatype=["html", "html", "html", "html"],
                    column_widths=[132, 132, 132, 132],
                    value=self.battle_counts_data,
                    interactive=False,
                )
            with gr.Column(min_width=420):
                win_rates_table = gr.DataFrame(
                    headers=["", "Hume AI", "OpenAI", "ElevenLabs"],
                    datatype=["html", "html", "html", "html"],
                    column_widths=[132, 132, 132, 132],
                    value=self.win_rates_data,
                    interactive=False,
                )

        with gr.Accordion(label="Citation", open=False):
            with gr.Column(variant="panel"):
                with gr.Column(variant="panel"):
                    gr.HTML(
                        value="""
                        <h2>Citation</h2>
                        <p style="padding: 0 8px;">
                            When referencing this leaderboard or its dataset in academic publications, please cite:
                        </p>
                        """,
                        padding=False,
                    )
                    gr.Markdown(
                        value="""
                        **BibTeX**
                        ```BibTeX
                        @misc{expressive-tts-arena,
                            title = {Expressive TTS Arena: An Open Platform for Evaluating Text-to-Speech Expressiveness by Human Preference},
                            author = {Alan Cowen, Zachary Greathouse, Richard Marmorstein, Jeremy Hadfield},
                            year = {2025},
                            publisher = {Hugging Face},
                            howpublished = {\\url{https://huggingface.co/spaces/HumeAI/expressive-tts-arena}}
                        }
                        ```
                        """
                    )
                    gr.HTML(
                        value="""
                        <h2>Terms of Use</h2>
                        <p style="padding: 0 8px;">
                            Users are required to agree to the following terms before using the service:
                        </p>
                        <p style="padding: 0 8px;">
                            All generated audio clips are provided for research and evaluation purposes only.
                            The audio content may not be redistributed or used for commercial purposes without
                            explicit permission. Users should not upload any private or personally identifiable
                            information. Please report any bugs, issues, or concerns to our
                            <a href="https://discord.com/invite/humeai" target="_blank" class="provider-link">
                                Discord community
                            </a>.
                        </p>
                        """,
                        padding=False,
                    )
                    gr.HTML(
                        value="""
                        <h2>Acknowledgements</h2>
                        <p style="padding: 0 8px;">
                            We thank all participants who contributed their votes to help build this leaderboard.
                        </p>
                        """,
                        padding=False,
                    )

        # Wrapper for the async refresh function
        async def async_refresh_handler() -> Tuple[Union[dict, gr.skip], Union[dict, gr.skip], Union[dict, gr.skip]]:
            """Async helper to call refresh_leaderboard and handle its tuple return."""
            logger.debug("Refresh button clicked, calling async_refresh_handler.")
            return await self.refresh_leaderboard(force=True)

        # Handler to re-enable the button after a short delay
        def reenable_button() -> dict: # Returns a Gradio update dict
            """Waits briefly and returns an update to re-enable the refresh button."""
            throttle_delay = 3 # seconds
            time.sleep(throttle_delay) # Okay in Gradio event handlers (runs in thread)
            return gr.update(interactive=True)

        # Refresh button click event handler
        refresh_button.click(
            fn=lambda _=None: (gr.update(interactive=False)), # Disable button immediately
            inputs=[],
            outputs=[refresh_button],
        ).then(
            fn=async_refresh_handler,
            inputs=[],
            outputs=[leaderboard_table, battle_counts_table, win_rates_table]  # Update all three tables
        ).then(
            fn=reenable_button, # Re-enable the button after a delay
            inputs=[],
            outputs=[refresh_button]
        )

        logger.debug("Leaderboard UI section built.")
        # Return the component instances needed by the Frontend class
        return leaderboard_table, battle_counts_table, win_rates_table