Spaces:
Runtime error
Runtime error
File size: 13,833 Bytes
0c4cbbd f8f87e4 acc65ac 577a1e1 acc65ac 577a1e1 f8f87e4 577a1e1 363bf89 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 0c4cbbd 577a1e1 acc65ac 577a1e1 acc65ac 91354cc acc65ac 91354cc 51c247a f74f442 e30aa81 f74f442 e30aa81 0c4cbbd e30aa81 0c4cbbd f74f442 e30aa81 51c247a 0c4cbbd 51c247a e30aa81 51c247a e30aa81 acc65ac 577a1e1 acc65ac e30aa81 51c247a e30aa81 577a1e1 acc65ac 577a1e1 363bf89 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 363bf89 577a1e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
from huggingface_hub import HfApi, snapshot_download
from helper import download_hugging_face_embeddings
from url import md_files_url
from get_data import extract_repo_details, fetch_md_file_via_api, data_loader, chunk_text
from langchain_community.llms import Ollama
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever
from langchain.memory import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.vectorstores import FAISS
from langchain.schema import Document
from dotenv import load_dotenv
from prompt import system_prompt, retriever_prompt
import os
import logging
import gradio as gr
import sqlite3
import bcrypt
import uuid
from datetime import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
base = {}
last_messages = 4
documents = []
load_dotenv()
AUTH_TOKEN_KEY = os.environ.get('AUTH_TOKEN_KEY')
BASE_URL = os.environ.get('BASE_URL')
os.environ['AUTH_TOKEN_KEY'] = AUTH_TOKEN_KEY
os.environ['BASE_URL'] = BASE_URL
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ['HF_TOKEN'] = HF_TOKEN
HF_USERNAME = "HumbleBeeAI" # Replace with your HF username
DATASET_NAME = "faiss_index"
index_path = "faiss_index"
from pathlib import Path
# πΉ Use /tmp directory in Hugging Face Spaces (to avoid filesystem restrictions)
db_path = "/tmp/chatbot.db"
# πΉ Ensure the database file exists
if not os.path.exists(db_path):
print("π΄ chatbot.db does not exist! Creating it now...")
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL
)''')
conn.commit()
conn.close()
print("β
chatbot.db created successfully!")
# πΉ Confirm file existence
if os.path.exists(db_path):
print(f"β
File chatbot.db found at {db_path}")
else:
raise FileNotFoundError("π¨ chatbot.db was not found!")
api = HfApi()
# πΉ Upload chatbot.db as a private dataset
api.upload_file(
path_or_fileobj=db_path, # Use the /tmp path
path_in_repo="chatbot.db", # How it will appear in the dataset
repo_id=f"{HF_USERNAME}/{DATASET_NAME}", # Your private dataset repo
repo_type="dataset",
token=HF_TOKEN
)
print("β
chatbot.db successfully uploaded to Hugging Face Dataset.")
# πΉ Download chatbot.db securely
db_folder = snapshot_download(
repo_id=f"{HF_USERNAME}/{DATASET_NAME}",
allow_patterns=["chatbot.db"], # Only download the database
use_auth_token=HF_TOKEN
)
# πΉ Define the database path
DB_PATH = os.path.join(db_folder, "chatbot.db")
# πΉ Confirm database was downloaded
if os.path.exists(DB_PATH):
print(f"β
Database downloaded at {DB_PATH}")
else:
raise FileNotFoundError("π¨ Failed to download chatbot.db from Hugging Face.")
# ---- Database part ----- #
# Database Connection
def connect_db():
return sqlite3.connect(DB_PATH)
def create_tables():
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL
)''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS chat_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER NOT NULL,
message TEXT NOT NULL,
response TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(user_id) REFERENCES users(id) ON DELETE CASCADE
)''')
conn.commit()
create_tables()
logger.info("Database tables created successfully!")
# Secure Password Hashing
def hash_password(password):
return bcrypt.hashpw(password.encode(), bcrypt.gensalt()).decode()
def check_password(password, hashed):
return bcrypt.checkpw(password.encode(), hashed.encode())
# Authenticate User
def authenticate(username, password):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, password_hash FROM users WHERE username = ?", (username,))
user = cursor.fetchone()
if user and check_password(password, user[1]):
session_id = uuid.uuid4().hex # Unique session ID
return session_id, f"Welcome {username}!", user[0] # user_id
return None, "Invalid username or password.", None
# Signup Function
def signup(username, password):
try:
hashed_pw = hash_password(password)
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)", (username, hashed_pw))
conn.commit()
return f"User {username} registered successfully! You can now log in."
except sqlite3.IntegrityError:
return "Username already exists. Try another one."
# Store Chat in Database
def save_chat(user_id, message, response):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO chat_history (user_id, message, response, created_at) VALUES (?, ?, ?, ?)",
(user_id, message, response, datetime.now()))
conn.commit()
# Retrieve Chat History (User-specific)
def get_chat_history(user_id):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("SELECT message, response FROM chat_history WHERE user_id = ? ORDER BY created_at", (user_id,))
chat_history = cursor.fetchall()
return [(msg, resp) for msg, resp in chat_history]
# --------------------------------- #
#Option 2-load directly from urls
for url in md_files_url:
try:
repo_owner, repo_name, file_path = extract_repo_details(url)
content = fetch_md_file_via_api(repo_owner, repo_name, file_path, AUTH_TOKEN_KEY)
if content:
document = Document(page_content=content, metadata={"source": file_path})
documents.append(document)
except ValueError as ve:
logging.error(f"Error processing URL {url}: {ve}")
print(f"Fetched {len(documents)} documents.")
# πΉ Use /tmp directory in Spaces
faiss_index_path = "/tmp/faiss_index"
# πΉ Ensure FAISS index exists before uploading
if not os.path.exists(faiss_index_path):
print("π΄ FAISS index not found! Creating a new FAISS index...")
# Create a dummy FAISS index (you should replace this with real embeddings)
d = 768 # Embedding dimension
index = faiss.IndexFlatL2(d) # Create an empty FAISS index
faiss.write_index(index, os.path.join(faiss_index_path, "index.faiss"))
print("β
FAISS index created successfully!")
# πΉ Confirm FAISS index exists
faiss_file = os.path.join(faiss_index_path, "index.faiss")
if os.path.exists(faiss_file):
print(f"β
FAISS index found at {faiss_file}")
else:
raise FileNotFoundError("π¨ FAISS index was not found!")
api = HfApi()
# πΉ Upload FAISS index as a private dataset
api.upload_folder(
folder_path=faiss_index_path, # Upload the FAISS folder
repo_id=f"{HF_USERNAME}/{DATASET_NAME}", # Your private dataset repo
repo_type="dataset",
token=HF_TOKEN
)
print("β
FAISS index successfully uploaded to Hugging Face Dataset.")
# πΉ Download FAISS index securely
faiss_folder = snapshot_download(
repo_id=f"{HF_USERNAME}/{DATASET_NAME}",
allow_patterns=["faiss_index/*"], # Only download FAISS index
use_auth_token=HF_TOKEN
)
# πΉ Define FAISS file path
faiss_file_path = os.path.join(faiss_folder, "index.faiss")
# πΉ Ensure the FAISS index was downloaded
if os.path.exists(faiss_file_path):
print(f"β
FAISS index downloaded at {faiss_file_path}")
else:
raise FileNotFoundError("π¨ Failed to download FAISS index from Hugging Face.")
# πΉ Load FAISS Index
index = faiss.read_index(faiss_file_path)
# πΉ Integrate FAISS with LangChain
embedding_function = download_hugging_face_embeddings() # Your embedding function
docsearch = FAISS(index, embedding_function)
retriever = docsearch.as_retriever(search_type='similarity', search_kwargs={'k':2})
llm = Ollama(model='llama3.2', base_url=BASE_URL)
prompt = ChatPromptTemplate.from_messages(
[
('system', system_prompt),
('human', '{input}'),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
context_prompt = ChatPromptTemplate.from_messages(
[
('system', retriever_prompt),
MessagesPlaceholder(variable_name='chat_history'),
('human', '{input}'),
]
)
history_aware_retriever = create_history_aware_retriever(llm, retriever, context_prompt)
qa_prompt = ChatPromptTemplate.from_messages(
[
('system', system_prompt),
MessagesPlaceholder(variable_name='chat_history'),
('human', '{input}'),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
def get_session_history(session_id):
if session_id not in base:
base[session_id] = ChatMessageHistory()
stored_msg = base[session_id].messages
if len(stored_msg) >= last_messages:
base[session_id].clear()
for msg in stored_msg[-last_messages:]:
base[session_id].add_message(msg)
return base[session_id]
chat_with_msg_history = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key='input',
history_messages_key='chat_history'
)
def get_response(message, chat_history, session_id, user_id):
if not session_id or not user_id:
return "Session expired. Please log in again.", []
chat_history = get_chat_history(user_id) # Load user's previous chat history
response = chat_with_msg_history.invoke(
{'input': message},
{'configurable': {'session_id': session_id}},
)
# πΉ Log the response for debugging
print("LangChain Response:", response)
# πΉ Ensure response contains 'answer' (adjust this if needed)
if isinstance(response, dict) and 'answer' in response:
chatbot_reply = response['answer']
else:
chatbot_reply = "I'm sorry, I couldn't process that request."
save_chat(user_id, message, chatbot_reply)
chat_history.append((message, chatbot_reply)) # Append instead of overwriting
return "", chat_history
# Logout Function
def logout(session_id):
if session_id in base:
del base[session_id] # Clear session history
return None, "Logged out successfully.", None
## ... [Keep all previous code up to the Gradio UI section] ...
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## HumblebeeAI Customer Support Chatbot")
with gr.Row():
username = gr.Textbox(label="Username", interactive=True)
password = gr.Textbox(label="Password", type="password", interactive=True)
login_button = gr.Button("Login", interactive=False) # Initially disabled
signup_button = gr.Button("Signup", interactive=False) # Initially disabled
login_status = gr.Textbox(label="Status", interactive=False)
session_state = gr.State(None)
user_id_state = gr.State(None)
with gr.Column(visible=False) as chat_interface:
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message", placeholder="Ask me anything...")
send_button = gr.Button("Send")
logout_button = gr.Button("Logout")
# πΉ Enable buttons only when both username & password are filled
def enable_buttons(username, password):
is_valid = bool(username.strip()) and bool(password.strip())
return gr.update(interactive=is_valid), gr.update(interactive=is_valid)
username.change(enable_buttons, [username, password], [login_button, signup_button])
password.change(enable_buttons, [username, password], [login_button, signup_button])
# πΉ Login Logic (Clears Username & Password)
def login_user(username, password):
session_id, message, user_id = authenticate(username, password)
if session_id:
return session_id, user_id, message, "", "", get_chat_history(user_id), gr.update(visible=True)
return None, None, message, username, password, [], gr.update(visible=False)
login_button.click(
login_user,
[username, password],
[session_state, user_id_state, login_status, username, password, chatbot, chat_interface]
)
# πΉ Signup Logic (Clears Username & Password)
def signup_user(username, password):
message = signup(username, password)
return message, "", ""
signup_button.click(
signup_user,
[username, password],
[login_status, username, password]
)
# πΉ Sending Messages
send_button.click(
get_response,
[msg, chatbot, session_state, user_id_state],
[msg, chatbot]
)
msg.submit(
get_response,
[msg, chatbot, session_state, user_id_state],
[msg, chatbot]
)
# πΉ Logout Logic (Clears Chat and Resets UI)
def logout_user():
return None, "", "", [], gr.update(visible=False)
# πΉ Logout Function (Clears Status, Session, and Chat History)
def logout_user():
return None, "", "", "", [], gr.update(visible=False)
logout_button.click(
logout_user,
None,
[session_state, username, password, login_status, chatbot, chat_interface]
)
demo.launch(share=True)
|