File size: 17,308 Bytes
15bcbe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Base class for transformer layers."""

from typing import Any, Callable, Optional, Tuple

from absl import logging

from flax import linen as nn
import gin
import jax
import jax.numpy as jnp


from transformer import nn_components


Array = Any

# Tuple of scale factors
AttnScaleTuple = Tuple[Optional[Array], Optional[Array]]

# Tuple of keys,values,queries
KVQTuple = Tuple[Array, Array, Optional[Array], Optional[Array]]


@gin.configurable
class KVQLayer(nn.Module):
  """Generate keys, values, and queries for attention."""

  embedding_size: int
  num_heads: int
  head_size: int
  has_queries: bool = True
  has_queries2: bool = False  # For cross-attention, e.g. decoder or recurrence.

  normalize_keys: bool = True  # Normalize keys and queries.
  num_position_embeddings: int = 0  # Learned absolute position embeddings.
  pre_attn_dropout: bool = True
  dropout_rate: float = 0.0
  dtype: Any = jnp.float32

  def setup(self):
    kernel_init = nn.initializers.variance_scaling(
        scale=1.0, mode="fan_in", distribution="truncated_normal")

    # Project to keys,values,queries
    # Disable bias.  This prevents a failure mode whereby the attention matrix
    # can become filled with very large uniform values, due to high bias.
    self.keys_layer = nn.Dense(
        features=self.num_heads * self.head_size,
        use_bias=False,   # No bias for keys.
        kernel_init=kernel_init,
        dtype=self.dtype)
    self.values_layer = nn.Dense(
        features=self.num_heads * self.head_size,
        use_bias=False,   # No bias for values.
        kernel_init=kernel_init,
        dtype=self.dtype)
    if self.has_queries:
      self.queries_layer = nn.Dense(
          features=self.num_heads * self.head_size,
          use_bias=False,   # No bias for queries.
          kernel_init=kernel_init,
          dtype=self.dtype)
    if self.has_queries2:
      self.queries2_layer = nn.Dense(
          features=self.num_heads * self.head_size,
          use_bias=False,   # No bias for queries.
          kernel_init=kernel_init,
          dtype=self.dtype)

    # When normalizing keys and queries, attention must be scaled with
    # learned parameters.
    if self.normalize_keys:
      self.attention_scale = self.param("attention_scale",
                                        jax.nn.initializers.ones,
                                        (self.num_heads,), jnp.float32)

    # Learned position embeddings for absolute positions.
    if self.num_position_embeddings > 0:
      # Embeddings for query elements.
      self.position_embeddings = self.param(
          "position_embeddings",
          jax.nn.initializers.normal(stddev=1.0),
          (self.num_position_embeddings, self.embedding_size),
          jnp.float32)

    # Layernorm
    self.pre_attn_layernorm = nn_components.LayerNorm()

  def attention_scale_factor(self) -> Optional[Array]:
    """Returns the attention scale, when keys and queries are normalized."""
    if self.normalize_keys:
      return jnp.asarray(self.attention_scale, dtype=self.dtype)
    else:
      return None

  def _get_dropout_rng(self):
    return self.make_rng("dropout")

  def _normalize_kq(self, kq: Array) -> Array:
    """Normalize function for keys and queries."""
    epsilon = jnp.array(1.0e-6, dtype=self.dtype)
    kq_sum_sqr = jnp.sum(jnp.square(kq), axis=-1, keepdims=True)
    norm_kq = kq * jax.lax.rsqrt(kq_sum_sqr + epsilon)
    return jnp.asarray(norm_kq, dtype=self.dtype)

  def __call__(self, xs: Array, deterministic: bool = False) -> KVQTuple:
    """Takes a sequence of embeddings as input, and returns keys,values,queries.

    First apply pre_attn layernorm, and pre_attn dropout.
    Then add learned positional embeddings, if any.
    Return (keys, values, queries, queries2).

    Args:
      xs: input sequence of shape (batch_size, sequence_length, embedding_size)
      deterministic: if False, apply dropout.

    Returns:
      (keys, values, queries, queries2) of shape
          (batch_size, sequence_length, num_heads, head_size)
    """

    # Project inputs to (keys, values, queries).
    (batch_size, num_keys, _) = xs.shape
    drop_tile_shape = (1, 128, self.embedding_size)

    # Apply layernorm to input, rather than the output.
    # This provides better gradients through the resnet, and also avoids
    # the need for a prolonged warmup phase (https://arxiv.org/abs/2002.04745)

    # Layernorm for self-attention.
    logging.info("kvq: pre_attn xs = %r", xs)
    xs = jnp.asarray(xs, dtype=self.dtype)
    xs = self.pre_attn_layernorm(xs)

    # Add (optional) learned position embeddings.
    if self.num_position_embeddings > 0:
      assert xs.ndim == 3   # (b, sequence_length, embedding_size)
      assert xs.shape[-2] == self.num_position_embeddings
      logging.info("kvq: learned positions.")
      xs_pos = jnp.asarray(self.position_embeddings, dtype=self.dtype)
      xs_pos = jnp.expand_dims(xs_pos, 0)  # Add batch dimension.
      xs = xs + xs_pos

    # Pre-attention dropout.
    if self.pre_attn_dropout:
      logging.info("kvq: pre_attn dropout.")
      xs = nn_components.tiled_dropout(xs, drop_tile_shape, self.dropout_rate,
                                       rng_function=self._get_dropout_rng,
                                       deterministic=deterministic)

    # Compute keys and values.
    keys = self.keys_layer(xs)  # (b, num_keys, num_heads * head_size)
    values = self.values_layer(xs)

    # Compute queries and cross-attention queries if necessary.
    if self.has_queries:
      queries = self.queries_layer(xs)  # (b, num_keys, n_heads * head_size)
      logging.info("kvq: queries = %r", queries)
    else:
      queries = None
    if self.has_queries2:
      queries2 = self.queries2_layer(xs)  # (b, num_keys, n_heads * head_size)
      logging.info("kvq: queries2 = %r", queries2)
    else:
      queries2 = None

    # Reshape to split num_heads, head_size into separate dimensions.
    kv_shape = (batch_size, num_keys, self.num_heads, self.head_size)
    keys = jnp.reshape(keys, kv_shape)
    values = jnp.reshape(values, kv_shape)
    if queries is not None:
      queries = jnp.reshape(queries, kv_shape)
    if queries2 is not None:
      queries2 = jnp.reshape(queries2, kv_shape)

    if self.normalize_keys:
      # Normalize both keys and queries.
      # The learned attention_scale_factors() will return non-None.
      logging.info("kvq: normalize keys, queries.")
      keys = self._normalize_kq(keys)
      if queries is not None:
        queries = self._normalize_kq(queries)
      if queries2 is not None:
        queries2 = self._normalize_kq(queries2)
    else:
      # Scale queries by 1 / sqrt(d) when using unnormalized keys,queries.
      d_scale = jax.lax.rsqrt(float(self.head_size)).astype(self.dtype)
      logging.info("kvq: scale queries by 1/sqrt(d).")
      if queries is not None:
        queries = queries * d_scale
      if queries2 is not None:
        queries2 = queries2 * d_scale

    # Return keys, values, and queries.
    return (keys, values, queries, queries2)


@gin.configurable
class TransformerBase(nn.Module):
  """TransformerBase implements everything except attention.

  It handles:
    - Projection to (keys, values, queries) before attention.
    - Projection MLP back to embedding_size after attention.
    - Final FFN layer.
    - layernorm, dropout, and normalization of keys and queries.

  This functionality is ecapsulated here so that it can be reused with more
  complicated attention mechanisms.
  """

  # Options set by parent module.
  mode: str
  embedding_size: int
  num_heads: int
  head_size: int

  cross_attention_q: bool = False         # Additional q for cross-attention.
  cross_attention_kv: bool = False        # Additional kv for cross-attention.
  num_position_embeddings: int = 0        # Learned position embeddings.
  num_cross_position_embeddings: int = 0  # Learned position embeddings.

  # Configurable hyperparameters.
  attn_mlp_factory: Callable[[int], nn.Module] = gin.REQUIRED
  ffn_factory: Callable[[int], nn.Module] = gin.REQUIRED
  gate_type: str = "residual"
  single_gate: bool = False
  skip_ffn: bool = False

  normalize_keys: bool = True
  dropout_rate: float = 0.0
  pre_attn_dropout: bool = True
  post_attn_dropout: bool = False
  pre_ffn_dropout: bool = False
  post_ffn_dropout: bool = True

  dtype: Any = jnp.float32

  def is_training(self) -> bool:
    return self.mode == "train"

  def _get_dropout_rng(self):
    return self.make_rng("dropout")

  def _normalize_kq(self, kq: Array) -> Array:
    """Normalize function for keys and queries."""
    epsilon = jnp.array(1.0e-6, dtype=self.dtype)
    kq_sum_sqr = jnp.sum(jnp.square(kq), axis=-1, keepdims=True)
    norm_kq = kq * jax.lax.rsqrt(kq_sum_sqr + epsilon)
    return jnp.asarray(norm_kq, dtype=self.dtype)

  def setup(self):
    # Keys,values,queries for self-attention; queries for cross-attention.
    self._kvq = KVQLayer(self.embedding_size, self.num_heads, self.head_size,
                         has_queries=True,
                         has_queries2=self.cross_attention_q,
                         num_position_embeddings=self.num_position_embeddings,
                         normalize_keys=self.normalize_keys,
                         pre_attn_dropout=self.pre_attn_dropout,
                         dropout_rate=self.dropout_rate,
                         dtype=self.dtype)

    # Keys,values, attention_scale for cross-attention.
    if self.cross_attention_kv:
      # Use a full kvq layer, with layernorm and attention scale.
      self._cross_kv = KVQLayer(
          self.embedding_size, self.num_heads, self.head_size,
          has_queries=False,
          has_queries2=False,
          num_position_embeddings=self.num_cross_position_embeddings,
          normalize_keys=self.normalize_keys,
          pre_attn_dropout=self.pre_attn_dropout,
          dropout_rate=self.dropout_rate,
          dtype=self.dtype)
    elif self.cross_attention_q:
      # No separate keys,values for cross-attention, but we may still need
      # cross-attention-scale, so we create our own.
      assert self.num_cross_position_embeddings == 0
      if self.normalize_keys:
        self.attention_scale2 = self.param("attention_scale2",
                                           jax.nn.initializers.ones,
                                           (self.num_heads,), jnp.float32)

    # Post-attention linear projection.
    if not self.single_gate:
      self.post_attn_mlp = self.attn_mlp_factory(
          self.embedding_size,
          gate_type=self.gate_type,
          final_activation=None,
          dtype=self.dtype)  # pytype: disable=wrong-keyword-args  # trace-all-classes

    # Final FNN.
    if not self.skip_ffn:
      self.ffn = self.ffn_factory(
          self.embedding_size,
          gate_type=self.gate_type,
          final_activation=("tanh" if self.single_gate else None),
          dtype=self.dtype)  # pytype: disable=wrong-keyword-args  # trace-all-classes

    # Layernorm.
    self.pre_ffn_layernorm = nn_components.LayerNorm()

  def force_init(self, xs: Array):
    """Force flax initialization of self, prior to use with lax.scan.

    Args:
      xs: The input sequence that the module will be called with.
    """
    logging.info("tbase: Begin forced initialization.")
    _ = self.kvq(xs)
    batch_size = xs.shape[0]
    seq_len = xs.shape[1]
    attn_ys_shape = (batch_size, seq_len, self.num_heads, self.head_size)
    dummy_attn_ys = jnp.zeros(attn_ys_shape, dtype=self.dtype)
    if self.cross_attention_kv or self.cross_attention_q:
      dummy_cross_attn_ys = dummy_attn_ys
    else:
      dummy_cross_attn_ys = None
    _ = self.post_attn_ffn(xs, dummy_attn_ys, dummy_cross_attn_ys)
    logging.info("tbase: End forced initialization.")

  def attention_scale_factors(self) -> AttnScaleTuple:
    """Returns the attention scales, when keys and queries are normalized.

    Returns: (scale for kv (i.e. queries), scale for cross_kv (i.e queries2))
    """
    sfactor = self._kvq.attention_scale_factor()
    if self.cross_attention_kv:
      cross_sfactor = self._cross_kv.attention_scale_factor()
    elif self.cross_attention_q and self.normalize_keys:
      cross_sfactor = jnp.asarray(self.attention_scale2, dtype=self.dtype)
    else:
      cross_sfactor = None
    return (sfactor, cross_sfactor)

  def kvq(self, xs: Array) -> KVQTuple:
    enable_dropout = self.pre_attn_dropout and self.is_training()
    return self._kvq(xs, deterministic=not enable_dropout)

  def cross_kv(self, xs: Array) -> Tuple[Array, Array]:
    assert self.cross_attention_kv
    enable_dropout = self.pre_attn_dropout and self.is_training()
    (k, v, _, _) = self._cross_kv(xs, deterministic=not enable_dropout)
    return (k, v)

  def post_attn_ffn(self, xs: Array, attn_ys: Array,
                    cross_attn_ys: Optional[Array]) -> Array:
    """Combines the output of attention with the original input sequence.

    Post-attn MLP on attn_ys, followed by resnet/gate.
    Pre-FFN layernorm and dropout, then the FFN layer, followed by resnet/gate.

    Args:
      xs: Original input sequence of shape
          (batch_size, sequence_length, embedding_size)
      attn_ys: Output of the self-attention module, of shape
          (batch_size, sequence_length, num_heads, head_size)
      cross_attn_ys: Output of the cross-attention module, of shape
          (batch_size, sequence_length, num_heads, head_size)

    Returns:
      Array of shape (batch_size, sequence_length, embedding_size)
    """

    (batch_size, sequence_length, _) = xs.shape
    assert attn_ys.shape == (batch_size, sequence_length,
                             self.num_heads, self.head_size)
    no_dropout = not self.is_training()
    drop_tile_shape = (1, 128, self.embedding_size)

    # Concatenate cross-attention and self-attention results.
    if cross_attn_ys is not None:
      # Concatenate self-attention and cross-attention results, before
      # applying the projection layer.
      logging.info("tbase: using cross-attention.")
      assert attn_ys.shape == (batch_size, sequence_length,
                               self.num_heads, self.head_size)
      attn_ys = jnp.concatenate([attn_ys, cross_attn_ys], axis=2)
      att_ys_num_heads = self.num_heads * 2
    else:
      # Only use self-attention.
      att_ys_num_heads = self.num_heads

    logging.info("tbase: attn_ys = %r", attn_ys)
    attn_ys = attn_ys.reshape(
        (batch_size, sequence_length, att_ys_num_heads * self.head_size))

    if self.single_gate:
      logging.info("tbase: single gate.")
      assert not self.skip_ffn
      # Skip post-attention linear projection and residual connection.
      ys_hidden = xs    # The FFN (below) will be gated onto xs (the input).
      ffn_in = attn_ys  # The input to the FFN is the output of attention.
    else:
      logging.info("tbase: post-attention MLP.")
      # Standard transformer archicture.
      # The post-attention MLP applies a linear projection to project attn_ys
      # to embedding space.  It then uses a residual connection or gate to
      # combine the projection with xs.  Post-attention dropout is applied
      # before the residual/gate.
      post_attn_ys = self.post_attn_mlp(
          attn_ys, xs,
          apply_dropout=self.post_attn_dropout and not no_dropout,
          dropout_rate=self.dropout_rate,
          drop_tile_shape=drop_tile_shape,
          rng_function=self._get_dropout_rng)

      # The FFN (below) will be gated onto post_attn_ys (which gates onto xs).
      ys_hidden = post_attn_ys
      if self.skip_ffn:
        logging.info("tbase: skip final FFN. ys = %r", ys_hidden)
        return ys_hidden

      # The input to the FFN; Layernorm is applied before the FFN.
      ffn_in = self.pre_ffn_layernorm(ys_hidden)
      logging.info("tbase: pre-FFN layernorm = %r", ffn_in)

      # Pre-FFN dropout.
      if self.pre_ffn_dropout:
        logging.info("tbase: pre-FFN dropout.")
        ffn_in = nn_components.tiled_dropout(
            ffn_in, drop_tile_shape, self.dropout_rate,
            rng_function=self._get_dropout_rng, deterministic=no_dropout)

    # FFN layer.
    # Large MLP with hidden layers followed by residual connection or gate.
    # The MLP will apply post-ffn dropout before the gate.
    logging.info("tbase: final FFN")
    ys = self.ffn(ffn_in, ys_hidden,
                  apply_dropout=self.post_ffn_dropout and not no_dropout,
                  dropout_rate=self.dropout_rate,
                  drop_tile_shape=drop_tile_shape,
                  rng_function=self._get_dropout_rng)

    logging.info("tbase: ys = %r", ys)
    return ys