Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Deformable DETR | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Modified from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------ | |
""" | |
Deformable DETR model and criterion classes. | |
""" | |
import copy | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torchvision.ops.boxes import batched_nms | |
from util import box_ops | |
from util.misc import (NestedTensor, accuracy, get_world_size, interpolate, | |
inverse_sigmoid, is_dist_avail_and_initialized, | |
nested_tensor_from_tensor_list) | |
from .assigner import Stage1Assigner, Stage2Assigner | |
from .backbone import build_backbone | |
from .deformable_transformer import build_deforamble_transformer | |
from .matcher import build_matcher | |
from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm, | |
dice_loss, sigmoid_focal_loss) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
class DeformableDETR(nn.Module): | |
""" This is the Deformable DETR module that performs object detection """ | |
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, | |
aux_loss=True, with_box_refine=False, two_stage=False): | |
""" Initializes the model. | |
Parameters: | |
backbone: torch module of the backbone to be used. See backbone.py | |
transformer: torch module of the transformer architecture. See transformer.py | |
num_classes: number of object classes | |
num_queries: number of object queries, ie detection slot. This is the maximal number of objects | |
DETR can detect in a single image. For COCO, we recommend 100 queries. | |
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. | |
with_box_refine: iterative bounding box refinement | |
two_stage: two-stage Deformable DETR | |
""" | |
super().__init__() | |
self.num_queries = num_queries | |
self.transformer = transformer | |
hidden_dim = transformer.d_model | |
self.class_embed = nn.Linear(hidden_dim, num_classes) | |
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
self.num_feature_levels = num_feature_levels | |
if not two_stage: | |
self.query_embed = nn.Embedding(num_queries, hidden_dim*2) | |
if num_feature_levels > 1: | |
num_backbone_outs = len(backbone.strides) | |
input_proj_list = [] | |
for _ in range(num_backbone_outs): | |
in_channels = backbone.num_channels[_] | |
input_proj_list.append(nn.Sequential( | |
nn.Conv2d(in_channels, hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
)) | |
for _ in range(num_feature_levels - num_backbone_outs): | |
input_proj_list.append(nn.Sequential( | |
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), | |
nn.GroupNorm(32, hidden_dim), | |
)) | |
in_channels = hidden_dim | |
self.input_proj = nn.ModuleList(input_proj_list) | |
else: | |
self.input_proj = nn.ModuleList([ | |
nn.Sequential( | |
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
)]) | |
self.backbone = backbone | |
self.aux_loss = aux_loss | |
self.with_box_refine = with_box_refine | |
self.two_stage = two_stage | |
prior_prob = 0.01 | |
bias_value = -math.log((1 - prior_prob) / prior_prob) | |
self.class_embed.bias.data = torch.ones(num_classes) * bias_value | |
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) | |
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) | |
for proj in self.input_proj: | |
nn.init.xavier_uniform_(proj[0].weight, gain=1) | |
nn.init.constant_(proj[0].bias, 0) | |
# if two-stage, the last class_embed and bbox_embed is for region proposal generation | |
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers | |
if with_box_refine: | |
self.class_embed = _get_clones(self.class_embed, num_pred) | |
self.bbox_embed = _get_clones(self.bbox_embed, num_pred) | |
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) | |
# hack implementation for iterative bounding box refinement | |
self.transformer.decoder.bbox_embed = self.bbox_embed | |
else: | |
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) | |
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) | |
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) | |
self.transformer.decoder.bbox_embed = None | |
if two_stage: | |
# hack implementation for two-stage | |
self.transformer.decoder.class_embed = self.class_embed | |
for box_embed in self.bbox_embed: | |
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) | |
def forward(self, samples: NestedTensor): | |
""" The forward expects a NestedTensor, which consists of: | |
- samples.tensor: batched images, of shape [batch_size x 3 x H x W] | |
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels | |
It returns a dict with the following elements: | |
- "pred_logits": the classification logits (including no-object) for all queries. | |
Shape= [batch_size x num_queries x (num_classes + 1)] | |
- "pred_boxes": The normalized boxes coordinates for all queries, represented as | |
(center_x, center_y, height, width). These values are normalized in [0, 1], | |
relative to the size of each individual image (disregarding possible padding). | |
See PostProcess for information on how to retrieve the unnormalized bounding box. | |
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of | |
dictionnaries containing the two above keys for each decoder layer. | |
""" | |
if not isinstance(samples, NestedTensor): | |
samples = nested_tensor_from_tensor_list(samples) | |
features, pos = self.backbone(samples) | |
srcs = [] | |
masks = [] | |
for l, feat in enumerate(features): | |
src, mask = feat.decompose() | |
srcs.append(self.input_proj[l](src)) | |
masks.append(mask) | |
assert mask is not None | |
if self.num_feature_levels > len(srcs): | |
_len_srcs = len(srcs) | |
for l in range(_len_srcs, self.num_feature_levels): | |
if l == _len_srcs: | |
src = self.input_proj[l](features[-1].tensors) | |
else: | |
src = self.input_proj[l](srcs[-1]) | |
m = samples.mask | |
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] | |
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) | |
srcs.append(src) | |
masks.append(mask) | |
pos.append(pos_l) | |
query_embeds = None | |
if not self.two_stage: | |
query_embeds = self.query_embed.weight | |
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = self.transformer(srcs, masks, pos, query_embeds) | |
outputs_classes = [] | |
outputs_coords = [] | |
for lvl in range(hs.shape[0]): | |
if lvl == 0: | |
reference = init_reference | |
else: | |
reference = inter_references[lvl - 1] | |
reference = inverse_sigmoid(reference) | |
outputs_class = self.class_embed[lvl](hs[lvl]) | |
tmp = self.bbox_embed[lvl](hs[lvl]) | |
if reference.shape[-1] == 4: | |
tmp += reference | |
else: | |
assert reference.shape[-1] == 2 | |
tmp[..., :2] += reference | |
outputs_coord = tmp.sigmoid() | |
outputs_classes.append(outputs_class) | |
outputs_coords.append(outputs_coord) | |
outputs_class = torch.stack(outputs_classes) | |
outputs_coord = torch.stack(outputs_coords) | |
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], | |
'init_reference': init_reference} | |
if self.aux_loss: | |
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) | |
if self.two_stage: | |
enc_outputs_coord = enc_outputs_coord_unact.sigmoid() | |
out['enc_outputs'] = { | |
'pred_logits': enc_outputs_class, | |
'pred_boxes': enc_outputs_coord, | |
'anchors': anchors, | |
} | |
return out | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
return [{'pred_logits': a, 'pred_boxes': b} | |
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] | |
class SetCriterion(nn.Module): | |
""" This class computes the loss for DETR. | |
The process happens in two steps: | |
1) we compute hungarian assignment between ground truth boxes and the outputs of the model | |
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) | |
""" | |
def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25, | |
num_queries=300, assign_first_stage=False, assign_second_stage=False): | |
""" Create the criterion. | |
Parameters: | |
num_classes: number of object categories, omitting the special no-object category | |
matcher: module able to compute a matching between targets and proposals | |
weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
losses: list of all the losses to be applied. See get_loss for list of available losses. | |
focal_alpha: alpha in Focal Loss | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.losses = losses | |
self.focal_alpha = focal_alpha | |
self.assign_first_stage = assign_first_stage | |
self.assign_second_stage = assign_second_stage | |
if self.assign_first_stage: | |
self.stg1_assigner = Stage1Assigner() | |
if self.assign_second_stage: | |
self.stg2_assigner = Stage2Assigner(num_queries) | |
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): | |
"""Classification loss (NLL) | |
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] | |
""" | |
assert 'pred_logits' in outputs | |
src_logits = outputs['pred_logits'] | |
idx = self._get_src_permutation_idx(indices) | |
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) | |
target_classes = torch.full(src_logits.shape[:2], self.num_classes, | |
dtype=torch.int64, device=src_logits.device) | |
target_classes[idx] = target_classes_o | |
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], | |
dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) | |
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) | |
target_classes_onehot = target_classes_onehot[:,:,:-1] | |
loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] | |
losses = {'loss_ce': loss_ce} | |
if log: | |
# TODO this should probably be a separate loss, not hacked in this one here | |
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] | |
return losses | |
def loss_cardinality(self, outputs, targets, indices, num_boxes): | |
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes | |
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients | |
""" | |
pred_logits = outputs['pred_logits'] | |
device = pred_logits.device | |
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) | |
# Count the number of predictions that are NOT "no-object" (which is the last class) | |
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) | |
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) | |
losses = {'cardinality_error': card_err} | |
return losses | |
def loss_boxes(self, outputs, targets, indices, num_boxes): | |
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss | |
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] | |
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. | |
""" | |
assert 'pred_boxes' in outputs | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs['pred_boxes'][idx] | |
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) | |
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') | |
losses = {} | |
losses['loss_bbox'] = loss_bbox.sum() / num_boxes | |
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( | |
box_ops.box_cxcywh_to_xyxy(src_boxes), | |
box_ops.box_cxcywh_to_xyxy(target_boxes))) | |
losses['loss_giou'] = loss_giou.sum() / num_boxes | |
return losses | |
def loss_masks(self, outputs, targets, indices, num_boxes): | |
"""Compute the losses related to the masks: the focal loss and the dice loss. | |
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] | |
""" | |
assert "pred_masks" in outputs | |
src_idx = self._get_src_permutation_idx(indices) | |
tgt_idx = self._get_tgt_permutation_idx(indices) | |
src_masks = outputs["pred_masks"] | |
# TODO use valid to mask invalid areas due to padding in loss | |
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose() | |
target_masks = target_masks.to(src_masks) | |
src_masks = src_masks[src_idx] | |
# upsample predictions to the target size | |
src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], | |
mode="bilinear", align_corners=False) | |
src_masks = src_masks[:, 0].flatten(1) | |
target_masks = target_masks[tgt_idx].flatten(1) | |
losses = { | |
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), | |
"loss_dice": dice_loss(src_masks, target_masks, num_boxes), | |
} | |
return losses | |
def _get_src_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): | |
loss_map = { | |
'labels': self.loss_labels, | |
'cardinality': self.loss_cardinality, | |
'boxes': self.loss_boxes, | |
'masks': self.loss_masks | |
} | |
assert loss in loss_map, f'do you really want to compute {loss} loss?' | |
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) | |
def forward(self, outputs, targets): | |
""" This performs the loss computation. | |
Parameters: | |
outputs: dict of tensors, see the output specification of the model for the format | |
targets: list of dicts, such that len(targets) == batch_size. | |
The expected keys in each dict depends on the losses applied, see each loss' doc | |
""" | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'} | |
# Retrieve the matching between the outputs of the last layer and the targets | |
if self.assign_second_stage: | |
indices = self.stg2_assigner(outputs_without_aux, targets) | |
else: | |
indices = self.matcher(outputs_without_aux, targets) | |
# Compute the average number of target boxes accross all nodes, for normalization purposes | |
num_boxes = sum(len(t["labels"]) for t in targets) | |
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) | |
if is_dist_avail_and_initialized(): | |
torch.distributed.all_reduce(num_boxes) | |
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
kwargs = {} | |
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
if 'aux_outputs' in outputs: | |
for i, aux_outputs in enumerate(outputs['aux_outputs']): | |
if not self.assign_second_stage: | |
indices = self.matcher(aux_outputs, targets) | |
for loss in self.losses: | |
if loss == 'masks': | |
# Intermediate masks losses are too costly to compute, we ignore them. | |
continue | |
kwargs = {} | |
if loss == 'labels': | |
# Logging is enabled only for the last layer | |
kwargs['log'] = False | |
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) | |
l_dict = {k + f'_{i}': v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
if 'enc_outputs' in outputs: | |
enc_outputs = outputs['enc_outputs'] | |
bin_targets = copy.deepcopy(targets) | |
for bt in bin_targets: | |
bt['labels'] = torch.zeros_like(bt['labels']) | |
if self.assign_first_stage: | |
indices = self.stg1_assigner(enc_outputs, bin_targets) | |
else: | |
indices = self.matcher(enc_outputs, bin_targets) | |
for loss in self.losses: | |
if loss == 'masks': | |
# Intermediate masks losses are too costly to compute, we ignore them. | |
continue | |
kwargs = {} | |
if loss == 'labels': | |
# Logging is enabled only for the last layer | |
kwargs['log'] = False | |
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs) | |
l_dict = {k + f'_enc': v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
return losses | |
class PostProcess(nn.Module): | |
""" This module converts the model's output into the format expected by the coco api""" | |
def forward(self, outputs, target_sizes): | |
""" Perform the computation | |
Parameters: | |
outputs: raw outputs of the model | |
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
For evaluation, this must be the original image size (before any data augmentation) | |
For visualization, this should be the image size after data augment, but before padding | |
""" | |
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] | |
assert len(out_logits) == len(target_sizes) | |
assert target_sizes.shape[1] == 2 | |
prob = out_logits.sigmoid() | |
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1) | |
scores = topk_values | |
# topk_boxes = topk_indexes // out_logits.shape[2] | |
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode='floor') | |
labels = topk_indexes % out_logits.shape[2] | |
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4)) | |
# and from relative [0, 1] to absolute [0, height] coordinates | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
boxes = boxes * scale_fct[:, None, :] | |
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] | |
return results | |
class NMSPostProcess(nn.Module): | |
""" This module converts the model's output into the format expected by the coco api""" | |
def forward(self, outputs, target_sizes): | |
""" Perform the computation | |
Parameters: | |
outputs: raw outputs of the model | |
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
For evaluation, this must be the original image size (before any data augmentation) | |
For visualization, this should be the image size after data augment, but before padding | |
""" | |
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] | |
bs, n_queries, n_cls = out_logits.shape | |
assert len(out_logits) == len(target_sizes) | |
assert target_sizes.shape[1] == 2 | |
prob = out_logits.sigmoid() | |
all_scores = prob.view(bs, n_queries * n_cls).to(out_logits.device) | |
all_indexes = torch.arange(n_queries * n_cls)[None].repeat(bs, 1).to(out_logits.device) | |
all_boxes = all_indexes // out_logits.shape[2] | |
all_labels = all_indexes % out_logits.shape[2] | |
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1,1,4)) | |
# and from relative [0, 1] to absolute [0, height] coordinates | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
boxes = boxes * scale_fct[:, None, :] | |
results = [] | |
for b in range(bs): | |
box = boxes[b] | |
score = all_scores[b] | |
lbls = all_labels[b] | |
topk = min(len(score), 10000) | |
pre_topk = score.topk(topk).indices | |
box = box[pre_topk] | |
score = score[pre_topk] | |
lbls = lbls[pre_topk] | |
keep_inds = batched_nms(box, score, lbls, 0.7)[:100] | |
results.append({ | |
'scores': score[keep_inds], | |
'labels': lbls[keep_inds], | |
'boxes': box[keep_inds], | |
}) | |
return results | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
def build(args): | |
if args.dataset_file == 'coco': | |
num_classes = 91 | |
elif args.dataset_file in ['refcoco', 'refcoco+', 'refcocog']: | |
num_classes = 91 | |
elif args.dataset_file == "coco_panoptic": | |
num_classes = 250 | |
else: | |
num_classes = 20 | |
device = torch.device(args.device) | |
backbone = build_backbone(args) | |
transformer = build_deforamble_transformer(args) | |
model = DeformableDETR( | |
backbone, | |
transformer, | |
num_classes=num_classes, | |
num_queries=args.num_queries, | |
num_feature_levels=args.num_feature_levels, | |
aux_loss=args.aux_loss, | |
with_box_refine=args.with_box_refine, | |
two_stage=args.two_stage, | |
) | |
if args.masks: | |
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) | |
matcher = build_matcher(args) | |
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef} | |
weight_dict['loss_giou'] = args.giou_loss_coef | |
if args.masks: | |
weight_dict["loss_mask"] = args.mask_loss_coef | |
weight_dict["loss_dice"] = args.dice_loss_coef | |
# TODO this is a hack | |
if args.aux_loss: | |
aux_weight_dict = {} | |
for i in range(args.dec_layers - 1): | |
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) | |
aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
losses = ['labels', 'boxes', 'cardinality'] | |
if args.masks: | |
losses += ["masks"] | |
# num_classes, matcher, weight_dict, losses, focal_alpha=0.25 | |
criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha, | |
num_queries = args.num_queries, | |
assign_first_stage=args.assign_first_stage, | |
assign_second_stage=args.assign_second_stage) | |
criterion.to(device) | |
if args.assign_second_stage: | |
postprocessors = {'bbox': NMSPostProcess()} | |
else: | |
postprocessors = {'bbox': PostProcess()} | |
if args.masks: | |
postprocessors['segm'] = PostProcessSegm() | |
if args.dataset_file == "coco_panoptic": | |
is_thing_map = {i: i <= 90 for i in range(201)} | |
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) | |
return model, criterion, postprocessors | |