Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Deformable DETR | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Modified from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------ | |
""" | |
Backbone modules. | |
""" | |
from collections import OrderedDict | |
from typing import Dict, List | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from torch import nn | |
from torchvision.models._utils import IntermediateLayerGetter | |
from util.misc import NestedTensor, is_main_process | |
from .position_encoding import build_position_encoding | |
from .swin import get_swinb, get_swinl | |
class FrozenBatchNorm2d(torch.nn.Module): | |
""" | |
BatchNorm2d where the batch statistics and the affine parameters are fixed. | |
Copy-paste from torchvision.misc.ops with added eps before rqsrt, | |
without which any other models than torchvision.models.resnet[18,34,50,101] | |
produce nans. | |
""" | |
def __init__(self, n, eps=1e-5): | |
super(FrozenBatchNorm2d, self).__init__() | |
self.register_buffer("weight", torch.ones(n)) | |
self.register_buffer("bias", torch.zeros(n)) | |
self.register_buffer("running_mean", torch.zeros(n)) | |
self.register_buffer("running_var", torch.ones(n)) | |
self.eps = eps | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs): | |
num_batches_tracked_key = prefix + 'num_batches_tracked' | |
if num_batches_tracked_key in state_dict: | |
del state_dict[num_batches_tracked_key] | |
super(FrozenBatchNorm2d, self)._load_from_state_dict( | |
state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs) | |
def forward(self, x): | |
# move reshapes to the beginning | |
# to make it fuser-friendly | |
w = self.weight.reshape(1, -1, 1, 1) | |
b = self.bias.reshape(1, -1, 1, 1) | |
rv = self.running_var.reshape(1, -1, 1, 1) | |
rm = self.running_mean.reshape(1, -1, 1, 1) | |
eps = self.eps | |
scale = w * (rv + eps).rsqrt() | |
bias = b - rm * scale | |
return x * scale + bias | |
class BackboneBase(nn.Module): | |
def __init__(self, backbone: nn.Module, train_backbone: bool, return_interm_layers: bool): | |
super().__init__() | |
for name, parameter in backbone.named_parameters(): | |
if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: | |
parameter.requires_grad_(False) | |
if return_interm_layers: | |
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} | |
return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} | |
self.strides = [8, 16, 32] | |
self.num_channels = [512, 1024, 2048] | |
else: | |
return_layers = {'layer4': "0"} | |
self.strides = [32] | |
self.num_channels = [2048] | |
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) | |
def forward(self, tensor_list: NestedTensor): | |
xs = self.body(tensor_list.tensors) | |
out: Dict[str, NestedTensor] = {} | |
for name, x in xs.items(): | |
m = tensor_list.mask | |
assert m is not None | |
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] | |
out[name] = NestedTensor(x, mask) | |
return out | |
class Backbone(BackboneBase): | |
"""ResNet backbone with frozen BatchNorm.""" | |
def __init__(self, name: str, | |
train_backbone: bool, | |
return_interm_layers: bool, | |
dilation: bool): | |
norm_layer = FrozenBatchNorm2d | |
backbone = getattr(torchvision.models, name)( | |
replace_stride_with_dilation=[False, False, dilation], | |
pretrained=is_main_process(), norm_layer=norm_layer) | |
assert name not in ('resnet18', 'resnet34'), "number of channels are hard coded" | |
super().__init__(backbone, train_backbone, return_interm_layers) | |
if dilation: | |
self.strides[-1] = self.strides[-1] // 2 | |
class SwinBackbone(nn.Module): | |
def __init__(self): | |
# we skip R50 FrozenBatchNorm2d, dilation, train l{2,3,4} only | |
super().__init__() | |
# self.body = get_swinl() | |
self.body = get_swinb() | |
self.features = ['res3', 'res4', 'res5'] | |
self.strides = [8, 16, 32] | |
self.num_channels = [256, 512, 1024] | |
def forward(self, tensor_list: NestedTensor): | |
xs = self.body(tensor_list.tensors) | |
m = tensor_list.mask[None] | |
assert m is not None | |
out: Dict[str, NestedTensor] = {} | |
for name in self.features: | |
mask = F.interpolate(m.float(), size=xs[name].shape[-2:]).to(torch.bool)[0] | |
out[name] = NestedTensor(xs[name], mask) | |
return out | |
class Joiner(nn.Sequential): | |
def __init__(self, backbone, position_embedding): | |
super().__init__(backbone, position_embedding) | |
self.strides = backbone.strides | |
self.num_channels = backbone.num_channels | |
def forward(self, tensor_list: NestedTensor): | |
xs = self[0](tensor_list) | |
out: List[NestedTensor] = [] | |
pos = [] | |
for name, x in sorted(xs.items()): | |
out.append(x) | |
# position encoding | |
for x in out: | |
pos.append(self[1](x).to(x.tensors.dtype)) | |
return out, pos | |
def build_backbone(args): | |
position_embedding = build_position_encoding(args) | |
train_backbone = args.lr_backbone > 0 | |
return_interm_layers = args.masks or (args.num_feature_levels > 1) | |
if 'swin' in args.backbone: | |
backbone = SwinBackbone() | |
else: | |
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) | |
model = Joiner(backbone, position_embedding) | |
return model |