Upload 2 files
Browse files- app.py +47 -566
- constants.py +34 -166
app.py
CHANGED
@@ -259,356 +259,25 @@ def upload_file(files):
|
|
259 |
# print("success update", model_name)
|
260 |
# return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
261 |
|
262 |
-
def get_normalized_df(df):
|
263 |
-
# final_score = df.drop('name', axis=1).sum(axis=1)
|
264 |
-
# df.insert(1, 'Overall Score', final_score)
|
265 |
-
normalize_df = df.copy().fillna(0.0)
|
266 |
-
for column in normalize_df.columns[1:-5]:
|
267 |
-
min_val = NORMALIZE_DIC[column]['Min']
|
268 |
-
max_val = NORMALIZE_DIC[column]['Max']
|
269 |
-
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
270 |
-
return normalize_df
|
271 |
-
|
272 |
-
def get_normalized_i2v_df(df):
|
273 |
-
normalize_df = df.copy().fillna(0.0)
|
274 |
-
for column in normalize_df.columns[1:-5]:
|
275 |
-
min_val = NORMALIZE_DIC_I2V[column]['Min']
|
276 |
-
max_val = NORMALIZE_DIC_I2V[column]['Max']
|
277 |
-
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
278 |
-
return normalize_df
|
279 |
-
|
280 |
-
|
281 |
-
def calculate_selected_score(df, selected_columns):
|
282 |
-
# selected_score = df[selected_columns].sum(axis=1)
|
283 |
-
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
284 |
-
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
|
285 |
-
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
|
286 |
-
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
|
287 |
-
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
|
288 |
-
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
289 |
-
return selected_score.fillna(0.0)
|
290 |
-
if selected_quality_score.isna().any().any():
|
291 |
-
return selected_semantic_score
|
292 |
-
if selected_semantic_score.isna().any().any():
|
293 |
-
return selected_quality_score
|
294 |
-
# print(selected_semantic_score,selected_quality_score )
|
295 |
-
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
296 |
-
return selected_score.fillna(0.0)
|
297 |
-
|
298 |
-
def calculate_selected_score_i2v(df, selected_columns):
|
299 |
-
# selected_score = df[selected_columns].sum(axis=1)
|
300 |
-
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
|
301 |
-
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
|
302 |
-
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
|
303 |
-
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
|
304 |
-
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
|
305 |
-
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
306 |
-
return selected_score.fillna(0.0)
|
307 |
-
if selected_quality_score.isna().any().any():
|
308 |
-
return selected_i2v_score
|
309 |
-
if selected_i2v_score.isna().any().any():
|
310 |
-
return selected_quality_score
|
311 |
-
# print(selected_i2v_score,selected_quality_score )
|
312 |
-
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
313 |
-
return selected_score.fillna(0.0)
|
314 |
-
|
315 |
-
def get_final_score(df, selected_columns):
|
316 |
-
normalize_df = get_normalized_df(df)
|
317 |
-
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
318 |
-
try:
|
319 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
320 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
321 |
-
except:
|
322 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
323 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
324 |
-
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
|
325 |
-
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
|
326 |
-
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
327 |
-
if 'Total Score' in df:
|
328 |
-
df['Total Score'] = final_score
|
329 |
-
else:
|
330 |
-
df.insert(1, 'Total Score', final_score)
|
331 |
-
if 'Semantic Score' in df:
|
332 |
-
df['Semantic Score'] = semantic_score
|
333 |
-
else:
|
334 |
-
df.insert(2, 'Semantic Score', semantic_score)
|
335 |
-
if 'Quality Score' in df:
|
336 |
-
df['Quality Score'] = quality_score
|
337 |
-
else:
|
338 |
-
df.insert(3, 'Quality Score', quality_score)
|
339 |
-
selected_score = calculate_selected_score(normalize_df, selected_columns)
|
340 |
-
if 'Selected Score' in df:
|
341 |
-
df['Selected Score'] = selected_score
|
342 |
-
else:
|
343 |
-
df.insert(1, 'Selected Score', selected_score)
|
344 |
-
return df
|
345 |
-
|
346 |
-
def get_final_score_i2v(df, selected_columns):
|
347 |
-
normalize_df = get_normalized_i2v_df(df)
|
348 |
-
try:
|
349 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
350 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
351 |
-
except:
|
352 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
353 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
354 |
-
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
|
355 |
-
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
|
356 |
-
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
357 |
-
if 'Total Score' in df:
|
358 |
-
df['Total Score'] = final_score
|
359 |
-
else:
|
360 |
-
df.insert(1, 'Total Score', final_score)
|
361 |
-
if 'I2V Score' in df:
|
362 |
-
df['I2V Score'] = i2v_score
|
363 |
-
else:
|
364 |
-
df.insert(2, 'I2V Score', i2v_score)
|
365 |
-
if 'Quality Score' in df:
|
366 |
-
df['Quality Score'] = quality_score
|
367 |
-
else:
|
368 |
-
df.insert(3, 'Quality Score', quality_score)
|
369 |
-
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
|
370 |
-
if 'Selected Score' in df:
|
371 |
-
df['Selected Score'] = selected_score
|
372 |
-
else:
|
373 |
-
df.insert(1, 'Selected Score', selected_score)
|
374 |
-
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
|
375 |
-
mask = df.iloc[:, 5:-5].isnull().any(axis=1)
|
376 |
-
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
|
377 |
-
# df.fillna('N.A.', inplace=True)
|
378 |
-
return df
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
def get_final_score_quality(df, selected_columns):
|
383 |
-
normalize_df = get_normalized_df(df)
|
384 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1):
|
385 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
386 |
-
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
|
387 |
-
|
388 |
-
if 'Quality Score' in df:
|
389 |
-
df['Quality Score'] = quality_score
|
390 |
-
else:
|
391 |
-
df.insert(1, 'Quality Score', quality_score)
|
392 |
-
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
|
393 |
-
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
|
394 |
-
if 'Selected Score' in df:
|
395 |
-
df['Selected Score'] = selected_score
|
396 |
-
else:
|
397 |
-
df.insert(1, 'Selected Score', selected_score)
|
398 |
-
return df
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
def get_baseline_df():
|
403 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
404 |
submission_repo.git_pull()
|
405 |
df = pd.read_csv(CSV_DIR)
|
406 |
-
df =
|
407 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
408 |
-
present_columns = MODEL_INFO + checkbox_group.value
|
409 |
-
# print(present_columns)
|
410 |
-
df = df[present_columns]
|
411 |
-
# Add this line to display the results evaluated by VBench by default
|
412 |
-
df = df[df['Evaluated by'] == 'VBench Team']
|
413 |
-
df = convert_scores_to_percentage(df)
|
414 |
-
return df
|
415 |
-
|
416 |
-
def get_baseline_df_quality():
|
417 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
418 |
-
submission_repo.git_pull()
|
419 |
-
df = pd.read_csv(QUALITY_DIR)
|
420 |
-
df = get_final_score_quality(df, checkbox_group_quality.value)
|
421 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
422 |
-
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
|
423 |
-
df = df[present_columns]
|
424 |
-
df = convert_scores_to_percentage(df)
|
425 |
-
return df
|
426 |
-
|
427 |
-
def get_baseline_df_i2v():
|
428 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
429 |
-
submission_repo.git_pull()
|
430 |
-
df = pd.read_csv(I2V_DIR)
|
431 |
-
df = get_final_score_i2v(df, checkbox_group_i2v.value)
|
432 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
433 |
-
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value
|
434 |
-
# df = df[df["Sampled by"] == 'VBench Team']
|
435 |
-
df = df[present_columns]
|
436 |
-
df = convert_scores_to_percentage(df)
|
437 |
-
return df
|
438 |
-
|
439 |
-
def get_baseline_df_long():
|
440 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
441 |
-
submission_repo.git_pull()
|
442 |
-
df = pd.read_csv(LONG_DIR)
|
443 |
-
df = get_final_score(df, checkbox_group.value)
|
444 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
445 |
-
present_columns = MODEL_INFO + checkbox_group.value
|
446 |
-
# df = df[df["Sampled by"] == 'VBench Team']
|
447 |
-
df = df[present_columns]
|
448 |
-
df = convert_scores_to_percentage(df)
|
449 |
-
return df
|
450 |
-
|
451 |
-
def get_all_df(selected_columns, dir=CSV_DIR):
|
452 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
453 |
-
submission_repo.git_pull()
|
454 |
-
df = pd.read_csv(dir)
|
455 |
-
df = get_final_score(df, selected_columns)
|
456 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
457 |
-
return df
|
458 |
-
|
459 |
-
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
|
460 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
461 |
-
submission_repo.git_pull()
|
462 |
-
df = pd.read_csv(dir)
|
463 |
-
df = get_final_score_quality(df, selected_columns)
|
464 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
465 |
-
return df
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
df =
|
471 |
-
df = get_final_score_i2v(df, selected_columns)
|
472 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
473 |
return df
|
474 |
|
475 |
-
def
|
476 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
477 |
submission_repo.git_pull()
|
478 |
df = pd.read_csv(dir)
|
479 |
-
df = get_final_score(df, selected_columns)
|
480 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
481 |
return df
|
482 |
|
483 |
|
484 |
-
def convert_scores_to_percentage(df):
|
485 |
-
# Operate on every column in the DataFrame (except the'name 'column)
|
486 |
-
if "Sampled by" in df.columns:
|
487 |
-
skip_col =3
|
488 |
-
else:
|
489 |
-
skip_col =1
|
490 |
-
print(df)
|
491 |
-
for column in df.columns[skip_col:]: # 假设第一列是'name'
|
492 |
-
# if df[column].isdigit():
|
493 |
-
# print(df[column])
|
494 |
-
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
|
495 |
-
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
|
496 |
-
if valid_numeric_count > 0:
|
497 |
-
df[column] = round(df[column] * 100,2)
|
498 |
-
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
|
499 |
-
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%'
|
500 |
-
return df
|
501 |
-
|
502 |
-
def choose_all_quailty():
|
503 |
-
return gr.update(value=QUALITY_LIST)
|
504 |
-
|
505 |
-
def choose_all_semantic():
|
506 |
-
return gr.update(value=SEMANTIC_LIST)
|
507 |
-
|
508 |
-
def disable_all():
|
509 |
-
return gr.update(value=[])
|
510 |
-
|
511 |
-
def enable_all():
|
512 |
-
return gr.update(value=TASK_INFO)
|
513 |
-
|
514 |
-
# select function
|
515 |
-
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
516 |
-
updated_data = get_all_df(selected_columns, CSV_DIR)
|
517 |
-
if vbench_team_sample:
|
518 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
519 |
-
if vbench_team_eval:
|
520 |
-
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
521 |
-
#print(updated_data)
|
522 |
-
# columns:
|
523 |
-
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
524 |
-
present_columns = MODEL_INFO + selected_columns
|
525 |
-
updated_data = updated_data[present_columns]
|
526 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
527 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
528 |
-
updated_headers = present_columns
|
529 |
-
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
|
530 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
531 |
-
# print(updated_data,present_columns,update_datatype)
|
532 |
-
filter_component = gr.components.Dataframe(
|
533 |
-
value=updated_data,
|
534 |
-
headers=updated_headers,
|
535 |
-
type="pandas",
|
536 |
-
datatype=update_datatype,
|
537 |
-
interactive=False,
|
538 |
-
visible=True,
|
539 |
-
)
|
540 |
-
return filter_component#.value
|
541 |
-
|
542 |
-
def on_filter_model_size_method_change_quality(selected_columns):
|
543 |
-
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
|
544 |
-
#print(updated_data)
|
545 |
-
# columns:
|
546 |
-
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
|
547 |
-
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
|
548 |
-
updated_data = updated_data[present_columns]
|
549 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
550 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
551 |
-
updated_headers = present_columns
|
552 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
553 |
-
# print(updated_data,present_columns,update_datatype)
|
554 |
-
filter_component = gr.components.Dataframe(
|
555 |
-
value=updated_data,
|
556 |
-
headers=updated_headers,
|
557 |
-
type="pandas",
|
558 |
-
datatype=update_datatype,
|
559 |
-
interactive=False,
|
560 |
-
visible=True,
|
561 |
-
)
|
562 |
-
return filter_component#.value
|
563 |
-
|
564 |
-
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
|
565 |
-
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
|
566 |
-
if vbench_team_sample:
|
567 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
568 |
-
# if vbench_team_eval:
|
569 |
-
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
|
570 |
-
selected_columns = [item for item in I2V_TAB if item in selected_columns]
|
571 |
-
present_columns = MODEL_INFO_TAB_I2V + selected_columns
|
572 |
-
updated_data = updated_data[present_columns]
|
573 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
574 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
575 |
-
updated_headers = present_columns
|
576 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
|
577 |
-
# print(updated_data,present_columns,update_datatype)
|
578 |
-
filter_component = gr.components.Dataframe(
|
579 |
-
value=updated_data,
|
580 |
-
headers=updated_headers,
|
581 |
-
type="pandas",
|
582 |
-
datatype=update_datatype,
|
583 |
-
interactive=False,
|
584 |
-
visible=True,
|
585 |
-
)
|
586 |
-
return filter_component#.value
|
587 |
-
|
588 |
-
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
589 |
-
updated_data = get_all_df_long(selected_columns, LONG_DIR)
|
590 |
-
if vbench_team_sample:
|
591 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
592 |
-
if vbench_team_eval:
|
593 |
-
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
594 |
-
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
595 |
-
present_columns = MODEL_INFO + selected_columns
|
596 |
-
updated_data = updated_data[present_columns]
|
597 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
598 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
599 |
-
updated_headers = present_columns
|
600 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
601 |
-
filter_component = gr.components.Dataframe(
|
602 |
-
value=updated_data,
|
603 |
-
headers=updated_headers,
|
604 |
-
type="pandas",
|
605 |
-
datatype=update_datatype,
|
606 |
-
interactive=False,
|
607 |
-
visible=True,
|
608 |
-
)
|
609 |
-
return filter_component#.value
|
610 |
-
|
611 |
-
|
612 |
block = gr.Blocks()
|
613 |
with block:
|
614 |
gr.Markdown(
|
@@ -624,238 +293,50 @@ with block:
|
|
624 |
label="Model Type",
|
625 |
interactive=True
|
626 |
)
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
interactive=True,
|
633 |
)
|
634 |
-
|
635 |
-
# data_component = gr.components.Dataframe(
|
636 |
-
# value=get_baseline_df,
|
637 |
-
# headers=COLUMN_NAMES,
|
638 |
-
# type="pandas",
|
639 |
-
# datatype=DATA_TITILE_TYPE,
|
640 |
-
# interactive=False,
|
641 |
-
# visible=True,
|
642 |
-
# height=700,
|
643 |
-
# )
|
644 |
-
|
645 |
-
# choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
646 |
-
# choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
647 |
-
# # enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter], outputs=data_component)
|
648 |
-
# disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
649 |
-
# checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
650 |
-
# vbench_team_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
651 |
-
# vbench_validate_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
652 |
-
# # Table 1
|
653 |
-
# with gr.TabItem("Video Quality", elem_id="vbench-tab-table", id=2):
|
654 |
-
# with gr.Accordion("INSTRUCTION", open=False):
|
655 |
-
# citation_button = gr.Textbox(
|
656 |
-
# value=QUALITY_CLAIM_TEXT,
|
657 |
-
# label="",
|
658 |
-
# elem_id="quality-button",
|
659 |
-
# lines=2,
|
660 |
-
# )
|
661 |
-
# with gr.Row():
|
662 |
-
# with gr.Column(scale=1.0):
|
663 |
-
# # selection for column part:
|
664 |
-
|
665 |
-
# checkbox_group_quality = gr.CheckboxGroup(
|
666 |
-
# choices=QUALITY_TAB,
|
667 |
-
# value=QUALITY_TAB,
|
668 |
-
# label="Evaluation Quality Dimension",
|
669 |
-
# interactive=True,
|
670 |
-
# )
|
671 |
-
|
672 |
-
# data_component_quality = gr.components.Dataframe(
|
673 |
-
# value=get_baseline_df_quality,
|
674 |
-
# headers=COLUMN_NAMES_QUALITY,
|
675 |
-
# type="pandas",
|
676 |
-
# datatype=DATA_TITILE_TYPE,
|
677 |
-
# interactive=False,
|
678 |
-
# visible=True,
|
679 |
-
# )
|
680 |
-
|
681 |
-
# checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
682 |
-
|
683 |
-
# # Table i2v
|
684 |
-
# with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3):
|
685 |
-
# with gr.Accordion("NOTE", open=False):
|
686 |
-
# i2v_note_button = gr.Textbox(
|
687 |
-
# value=I2V_CLAIM_TEXT,
|
688 |
-
# label="",
|
689 |
-
# elem_id="quality-button",
|
690 |
-
# lines=3,
|
691 |
-
# )
|
692 |
-
# with gr.Row():
|
693 |
-
# with gr.Column(scale=1.0):
|
694 |
-
# # selection for column part:
|
695 |
-
# with gr.Row():
|
696 |
-
# vbench_team_filter_i2v = gr.Checkbox(
|
697 |
-
# label="Sampled by VBench Team (Uncheck to view all submissions)",
|
698 |
-
# value=False,
|
699 |
-
# interactive=True
|
700 |
-
# )
|
701 |
-
# vbench_validate_filter_i2v = gr.Checkbox(
|
702 |
-
# label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
703 |
-
# value=False,
|
704 |
-
# interactive=True
|
705 |
-
# )
|
706 |
-
# checkbox_group_i2v = gr.CheckboxGroup(
|
707 |
-
# choices=I2V_TAB,
|
708 |
-
# value=I2V_TAB,
|
709 |
-
# label="Evaluation Quality Dimension",
|
710 |
-
# interactive=True,
|
711 |
-
# )
|
712 |
-
|
713 |
-
# data_component_i2v = gr.components.Dataframe(
|
714 |
-
# value=get_baseline_df_i2v,
|
715 |
-
# headers=COLUMN_NAMES_I2V,
|
716 |
-
# type="pandas",
|
717 |
-
# datatype=I2V_TITILE_TYPE,
|
718 |
-
# interactive=False,
|
719 |
-
# visible=True,
|
720 |
-
# )
|
721 |
-
|
722 |
-
# checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
723 |
-
# vbench_team_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
724 |
-
# vbench_validate_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
725 |
-
|
726 |
-
# with gr.TabItem("📊 VBench-Long", elem_id="vbench-tab-table", id=4):
|
727 |
-
# with gr.Row():
|
728 |
-
# with gr.Accordion("INSTRUCTION", open=False):
|
729 |
-
# citation_button = gr.Textbox(
|
730 |
-
# value=LONG_CLAIM_TEXT,
|
731 |
-
# label="",
|
732 |
-
# elem_id="long-ins-button",
|
733 |
-
# lines=2,
|
734 |
-
# )
|
735 |
-
|
736 |
-
# gr.Markdown(
|
737 |
-
# TABLE_INTRODUCTION
|
738 |
-
# )
|
739 |
-
# with gr.Row():
|
740 |
-
# with gr.Column(scale=0.2):
|
741 |
-
# choosen_q_long = gr.Button("Select Quality Dimensions")
|
742 |
-
# choosen_s_long = gr.Button("Select Semantic Dimensions")
|
743 |
-
# enable_b_long = gr.Button("Select All")
|
744 |
-
# disable_b_long = gr.Button("Deselect All")
|
745 |
-
|
746 |
-
# with gr.Column(scale=0.8):
|
747 |
-
# with gr.Row():
|
748 |
-
# vbench_team_filter_long = gr.Checkbox(
|
749 |
-
# label="Sampled by VBench Team (Uncheck to view all submissions)",
|
750 |
-
# value=False,
|
751 |
-
# interactive=True
|
752 |
-
# )
|
753 |
-
# vbench_validate_filter_long = gr.Checkbox(
|
754 |
-
# label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
755 |
-
# value=False,
|
756 |
-
# interactive=True
|
757 |
-
# )
|
758 |
-
# checkbox_group_long = gr.CheckboxGroup(
|
759 |
-
# choices=TASK_INFO,
|
760 |
-
# value=DEFAULT_INFO,
|
761 |
-
# label="Evaluation Dimension",
|
762 |
-
# interactive=True,
|
763 |
-
# )
|
764 |
-
|
765 |
-
# data_component = gr.components.Dataframe(
|
766 |
-
# value=get_baseline_df_long,
|
767 |
-
# headers=COLUMN_NAMES,
|
768 |
-
# type="pandas",
|
769 |
-
# datatype=DATA_TITILE_TYPE,
|
770 |
-
# interactive=False,
|
771 |
-
# visible=True,
|
772 |
-
# height=700,
|
773 |
-
# )
|
774 |
-
|
775 |
-
# choosen_q_long.click(choose_all_quailty, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
776 |
-
# choosen_s_long.click(choose_all_semantic, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
777 |
-
# enable_b_long.click(enable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
778 |
-
# disable_b_long.click(disable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
779 |
-
# checkbox_group_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
780 |
-
# vbench_team_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
781 |
-
# vbench_validate_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
782 |
-
|
783 |
-
# # table info
|
784 |
-
# with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=5):
|
785 |
-
# gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
|
786 |
-
|
787 |
-
# # table submission
|
788 |
-
# with gr.TabItem("🚀 [T2V]Submit here! ", elem_id="mvbench-tab-table", id=6):
|
789 |
-
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
790 |
-
|
791 |
-
# with gr.Row():
|
792 |
-
# gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
793 |
-
|
794 |
-
# with gr.Row():
|
795 |
-
# gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
|
796 |
-
|
797 |
-
# with gr.Row():
|
798 |
-
# gr.Markdown("Here is a required field", elem_classes="markdown-text")
|
799 |
-
# with gr.Row():
|
800 |
-
# with gr.Column():
|
801 |
-
# model_name_textbox = gr.Textbox(
|
802 |
-
# label="Model name", placeholder="Required field"
|
803 |
-
# )
|
804 |
-
# revision_name_textbox = gr.Textbox(
|
805 |
-
# label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
|
806 |
-
# )
|
807 |
-
# access_type = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
|
808 |
-
|
809 |
-
# with gr.Column():
|
810 |
-
# model_link = gr.Textbox(
|
811 |
-
# label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
|
812 |
-
# )
|
813 |
-
# team_name = gr.Textbox(
|
814 |
-
# label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
|
815 |
-
# )
|
816 |
-
# contact_email = gr.Textbox(
|
817 |
-
# label="E-Mail(Will not be displayed)", placeholder="Required field"
|
818 |
-
# )
|
819 |
-
# with gr.Row():
|
820 |
-
# gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
|
821 |
-
# with gr.Row():
|
822 |
-
# release_time = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
|
823 |
-
# model_resolution = gr.Textbox(label="resolution", placeholder="Width x Height")
|
824 |
-
# model_fps = gr.Textbox(label="model fps", placeholder="FPS(int)")
|
825 |
-
# model_frame = gr.Textbox(label="model frame count", placeholder="INT")
|
826 |
-
# model_video_length = gr.Textbox(label="model video length", placeholder="float(2.0)")
|
827 |
-
# model_checkpoint = gr.Textbox(label="model checkpoint", placeholder="optional")
|
828 |
-
# model_commit_id = gr.Textbox(label="github commit id", placeholder='main')
|
829 |
-
# model_video_format = gr.Textbox(label="pipeline format", placeholder='mp4')
|
830 |
-
# with gr.Column():
|
831 |
-
# input_file = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
|
832 |
-
# submit_button = gr.Button("Submit Eval")
|
833 |
-
# submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False)
|
834 |
-
# fail_textbox = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
|
835 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
|
|
|
|
|
|
|
|
|
|
859 |
|
860 |
# with gr.TabItem("🚀 [I2V]Submit here! ", elem_id="mvbench-i2v-tab-table", id=7):
|
861 |
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
|
|
259 |
# print("success update", model_name)
|
260 |
# return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
def get_baseline_df():
|
263 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
264 |
submission_repo.git_pull()
|
265 |
df = pd.read_csv(CSV_DIR)
|
266 |
+
df = df.sort_values(by=DEFAULT_INFO[0], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
# Add this line to display the results of all model types by default
|
269 |
+
df = df[df['Model Type'].isin(model_type_filter.value)]
|
270 |
+
# Add this line to display the results of both abilities by default
|
271 |
+
df = df[df['Ability'].isin(ability_filter.value)]
|
|
|
|
|
272 |
return df
|
273 |
|
274 |
+
def get_all_df(dir=CSV_DIR):
|
275 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
276 |
submission_repo.git_pull()
|
277 |
df = pd.read_csv(dir)
|
|
|
|
|
278 |
return df
|
279 |
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
block = gr.Blocks()
|
282 |
with block:
|
283 |
gr.Markdown(
|
|
|
293 |
label="Model Type",
|
294 |
interactive=True
|
295 |
)
|
296 |
+
ability_filter = gr.CheckboxGroup(
|
297 |
+
choices=ABILITY,
|
298 |
+
value=DEFAULT_ABILITY,
|
299 |
+
label="Ability",
|
300 |
+
interactive=True
|
|
|
301 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
data_component = gr.components.Dataframe(
|
304 |
+
column_widths="auto", # Automatically adjusts column widths
|
305 |
+
value=get_baseline_df(),
|
306 |
+
headers=COLUMN_NAMES,
|
307 |
+
type="pandas",
|
308 |
+
datatype=DATA_TITILE_TYPE,
|
309 |
+
interactive=False,
|
310 |
+
visible=True,
|
311 |
+
)
|
312 |
|
313 |
+
def on_filter_change(model_types, abilities):
|
314 |
+
df = get_baseline_df()
|
315 |
+
# Filter by selected model types
|
316 |
+
df = df[df['Model Type'].isin(model_types)]
|
317 |
+
# Filter by selected abilities
|
318 |
+
df = df[df['Ability'].isin(abilities)]
|
319 |
+
return gr.Dataframe(
|
320 |
+
column_widths="auto", # Automatically adjusts column widths
|
321 |
+
value=df,
|
322 |
+
headers=COLUMN_NAMES,
|
323 |
+
type="pandas",
|
324 |
+
datatype=DATA_TITILE_TYPE,
|
325 |
+
interactive=False,
|
326 |
+
visible=True
|
327 |
+
)
|
328 |
+
|
329 |
+
model_type_filter.change(
|
330 |
+
fn=on_filter_change,
|
331 |
+
inputs=[model_type_filter, ability_filter],
|
332 |
+
outputs=data_component
|
333 |
+
)
|
334 |
+
|
335 |
+
ability_filter.change(
|
336 |
+
fn=on_filter_change,
|
337 |
+
inputs=[model_type_filter, ability_filter],
|
338 |
+
outputs=data_component
|
339 |
+
)
|
340 |
|
341 |
# with gr.TabItem("🚀 [I2V]Submit here! ", elem_id="mvbench-i2v-tab-table", id=7):
|
342 |
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
constants.py
CHANGED
@@ -1,193 +1,61 @@
|
|
1 |
import os
|
2 |
# this is .py for store constants
|
3 |
MODEL_TYPE = [
|
4 |
-
"
|
5 |
-
"3D
|
6 |
-
"4D
|
7 |
]
|
8 |
DEFAULT_MODEL_TYPE = [
|
9 |
-
"
|
10 |
-
"3D
|
11 |
-
"4D
|
12 |
]
|
13 |
|
14 |
-
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"Evaluated by",
|
18 |
-
"Accessibility",
|
19 |
-
"Date",
|
20 |
-
"Total Score",
|
21 |
-
"Quality Score",
|
22 |
-
"Semantic Score",
|
23 |
-
"Selected Score",
|
24 |
]
|
25 |
-
|
26 |
-
|
27 |
-
"
|
28 |
-
"Quality Score",
|
29 |
-
"Selected Score"
|
30 |
-
]
|
31 |
-
|
32 |
-
MODEL_INFO_TAB_I2V = [
|
33 |
-
"Model Name (clickable)",
|
34 |
-
"Sampled by",
|
35 |
-
"Evaluated by",
|
36 |
-
"Accessibility",
|
37 |
-
"Date",
|
38 |
-
"Total Score",
|
39 |
-
"I2V Score",
|
40 |
-
"Quality Score",
|
41 |
-
"Selected Score"
|
42 |
]
|
43 |
|
44 |
TASK_INFO = [
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"scene",
|
58 |
-
"appearance style",
|
59 |
-
"temporal style",
|
60 |
-
"overall consistency"
|
61 |
]
|
62 |
-
|
63 |
DEFAULT_INFO = [
|
64 |
-
"
|
65 |
-
"background consistency",
|
66 |
-
"temporal flickering",
|
67 |
-
"motion smoothness",
|
68 |
-
"dynamic degree",
|
69 |
-
"aesthetic quality",
|
70 |
-
"imaging quality",
|
71 |
-
"object class",
|
72 |
-
"multiple objects",
|
73 |
-
"human action",
|
74 |
-
"color",
|
75 |
-
"spatial relationship",
|
76 |
-
"scene",
|
77 |
-
"appearance style",
|
78 |
-
"temporal style",
|
79 |
-
"overall consistency"
|
80 |
-
]
|
81 |
-
|
82 |
-
QUALITY_LIST = [
|
83 |
-
"subject consistency",
|
84 |
-
"background consistency",
|
85 |
-
"temporal flickering",
|
86 |
-
"motion smoothness",
|
87 |
-
"aesthetic quality",
|
88 |
-
"imaging quality",
|
89 |
-
"dynamic degree",]
|
90 |
-
|
91 |
-
SEMANTIC_LIST = [
|
92 |
-
"object class",
|
93 |
-
"multiple objects",
|
94 |
-
"human action",
|
95 |
-
"color",
|
96 |
-
"spatial relationship",
|
97 |
-
"scene",
|
98 |
-
"appearance style",
|
99 |
-
"temporal style",
|
100 |
-
"overall consistency"
|
101 |
]
|
102 |
|
103 |
-
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"
|
110 |
-
|
111 |
-
I2V_LIST = [
|
112 |
-
"Video-Text Camera Motion",
|
113 |
-
"Video-Image Subject Consistency",
|
114 |
-
"Video-Image Background Consistency",
|
115 |
-
]
|
116 |
-
|
117 |
-
I2V_QUALITY_LIST = [
|
118 |
-
"Subject Consistency",
|
119 |
-
"Background Consistency",
|
120 |
-
"Motion Smoothness",
|
121 |
-
"Dynamic Degree",
|
122 |
-
"Aesthetic Quality",
|
123 |
-
"Imaging Quality",
|
124 |
-
# "Temporal Flickering"
|
125 |
-
]
|
126 |
-
|
127 |
-
I2V_TAB = [
|
128 |
-
"Video-Text Camera Motion",
|
129 |
-
"Video-Image Subject Consistency",
|
130 |
-
"Video-Image Background Consistency",
|
131 |
-
"Subject Consistency",
|
132 |
-
"Background Consistency",
|
133 |
-
"Motion Smoothness",
|
134 |
-
"Dynamic Degree",
|
135 |
-
"Aesthetic Quality",
|
136 |
-
"Imaging Quality",
|
137 |
-
# "Temporal Flickering"
|
138 |
]
|
139 |
|
140 |
-
|
141 |
-
"subject consistency":1,
|
142 |
-
"background consistency":1,
|
143 |
-
"temporal flickering":1,
|
144 |
-
"motion smoothness":1,
|
145 |
-
"aesthetic quality":1,
|
146 |
-
"imaging quality":1,
|
147 |
-
"dynamic degree":0.5,
|
148 |
-
"object class":1,
|
149 |
-
"multiple objects":1,
|
150 |
-
"human action":1,
|
151 |
-
"color":1,
|
152 |
-
"spatial relationship":1,
|
153 |
-
"scene":1,
|
154 |
-
"appearance style":1,
|
155 |
-
"temporal style":1,
|
156 |
-
"overall consistency":1
|
157 |
-
}
|
158 |
-
|
159 |
-
DIM_WEIGHT_I2V = {
|
160 |
-
"Video-Text Camera Motion": 0.1,
|
161 |
-
"Video-Image Subject Consistency": 1,
|
162 |
-
"Video-Image Background Consistency": 1,
|
163 |
-
"Subject Consistency": 1,
|
164 |
-
"Background Consistency": 1,
|
165 |
-
"Motion Smoothness": 1,
|
166 |
-
"Dynamic Degree": 0.5,
|
167 |
-
"Aesthetic Quality": 1,
|
168 |
-
"Imaging Quality": 1,
|
169 |
-
"Temporal Flickering": 1
|
170 |
-
}
|
171 |
-
|
172 |
-
SEMANTIC_WEIGHT = 1
|
173 |
-
QUALITY_WEIGHT = 4
|
174 |
-
I2V_WEIGHT = 1.0
|
175 |
-
I2V_QUALITY_WEIGHT = 1.0
|
176 |
-
|
177 |
-
DATA_TITILE_TYPE = ['markdown', 'markdown', 'markdown', 'markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
178 |
-
I2V_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
179 |
|
180 |
SUBMISSION_NAME = "worldscore_leaderboard_submission"
|
181 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Howieeeee/", SUBMISSION_NAME)
|
182 |
CSV_DIR = "./worldscore_leaderboard_submission/results.csv"
|
183 |
-
QUALITY_DIR = "./worldscore_leaderboard_submission/quality.csv"
|
184 |
-
I2V_DIR = "./worldscore_leaderboard_submission/i2v_results.csv"
|
185 |
-
LONG_DIR = "./worldscore_leaderboard_submission/long_debug.csv"
|
186 |
INFO_DIR = "./worldscore_leaderboard_submission/model_info.csv"
|
187 |
|
188 |
COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
189 |
-
COLUMN_NAMES_QUALITY = MODEL_INFO_TAB_QUALITY + QUALITY_TAB
|
190 |
-
COLUMN_NAMES_I2V = MODEL_INFO_TAB_I2V + I2V_TAB
|
191 |
|
192 |
LEADERBORAD_INTRODUCTION = """# WorldScore Leaderboard
|
193 |
|
|
|
1 |
import os
|
2 |
# this is .py for store constants
|
3 |
MODEL_TYPE = [
|
4 |
+
"Video",
|
5 |
+
"3D",
|
6 |
+
"4D"
|
7 |
]
|
8 |
DEFAULT_MODEL_TYPE = [
|
9 |
+
"Video",
|
10 |
+
"3D",
|
11 |
+
"4D"
|
12 |
]
|
13 |
|
14 |
+
ABILITY = [
|
15 |
+
"I2V",
|
16 |
+
"T2V"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
]
|
18 |
+
DEFAULT_ABILITY = [
|
19 |
+
"I2V",
|
20 |
+
"T2V"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
]
|
22 |
|
23 |
TASK_INFO = [
|
24 |
+
"WorldScore-Static",
|
25 |
+
"WorldScore-Dynamic",
|
26 |
+
"Camera Control",
|
27 |
+
"Object Control",
|
28 |
+
"Content Alignment",
|
29 |
+
"3D Consistency",
|
30 |
+
"Photometric Consistency",
|
31 |
+
"Style Consistency",
|
32 |
+
"Subjective Quality",
|
33 |
+
"Motion Accuracy",
|
34 |
+
"Motion Magnitude",
|
35 |
+
"Motion Smoothness",
|
|
|
|
|
|
|
|
|
36 |
]
|
|
|
37 |
DEFAULT_INFO = [
|
38 |
+
"WorldScore-Static",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
]
|
40 |
|
41 |
+
MODEL_INFO = [
|
42 |
+
"Model Type",
|
43 |
+
"Model Name",
|
44 |
+
"Ability",
|
45 |
+
"Sampled by",
|
46 |
+
"Evaluated by",
|
47 |
+
"Accessibility",
|
48 |
+
"Date",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
]
|
50 |
|
51 |
+
DATA_TITILE_TYPE = ['markdown', 'markdown', 'markdown', 'markdown', 'markdown', 'markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
SUBMISSION_NAME = "worldscore_leaderboard_submission"
|
54 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Howieeeee/", SUBMISSION_NAME)
|
55 |
CSV_DIR = "./worldscore_leaderboard_submission/results.csv"
|
|
|
|
|
|
|
56 |
INFO_DIR = "./worldscore_leaderboard_submission/model_info.csv"
|
57 |
|
58 |
COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
|
|
|
|
59 |
|
60 |
LEADERBORAD_INTRODUCTION = """# WorldScore Leaderboard
|
61 |
|