|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
import os |
|
import io |
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import shutil |
|
import tempfile |
|
import datetime |
|
import zipfile |
|
import numpy as np |
|
|
|
|
|
from constants import * |
|
from huggingface_hub import Repository |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
global data_component, filter_component |
|
|
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_normalized_df(df): |
|
|
|
|
|
normalize_df = df.copy().fillna(0.0) |
|
for column in normalize_df.columns[1:-5]: |
|
min_val = NORMALIZE_DIC[column]['Min'] |
|
max_val = NORMALIZE_DIC[column]['Max'] |
|
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) |
|
return normalize_df |
|
|
|
def get_normalized_i2v_df(df): |
|
normalize_df = df.copy().fillna(0.0) |
|
for column in normalize_df.columns[1:-5]: |
|
min_val = NORMALIZE_DIC_I2V[column]['Min'] |
|
max_val = NORMALIZE_DIC_I2V[column]['Max'] |
|
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) |
|
return normalize_df |
|
|
|
|
|
def calculate_selected_score(df, selected_columns): |
|
|
|
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST] |
|
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST] |
|
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY]) |
|
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ]) |
|
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any(): |
|
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
if selected_quality_score.isna().any().any(): |
|
return selected_semantic_score |
|
if selected_semantic_score.isna().any().any(): |
|
return selected_quality_score |
|
|
|
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
|
|
def calculate_selected_score_i2v(df, selected_columns): |
|
|
|
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST] |
|
selected_I2V = [i for i in selected_columns if i in I2V_LIST] |
|
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY]) |
|
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ]) |
|
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any(): |
|
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
if selected_quality_score.isna().any().any(): |
|
return selected_i2v_score |
|
if selected_i2v_score.isna().any().any(): |
|
return selected_quality_score |
|
|
|
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
|
|
def get_final_score(df, selected_columns): |
|
normalize_df = get_normalized_df(df) |
|
|
|
try: |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
except: |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) |
|
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) |
|
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
if 'Total Score' in df: |
|
df['Total Score'] = final_score |
|
else: |
|
df.insert(1, 'Total Score', final_score) |
|
if 'Semantic Score' in df: |
|
df['Semantic Score'] = semantic_score |
|
else: |
|
df.insert(2, 'Semantic Score', semantic_score) |
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(3, 'Quality Score', quality_score) |
|
selected_score = calculate_selected_score(normalize_df, selected_columns) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
def get_final_score_i2v(df, selected_columns): |
|
normalize_df = get_normalized_i2v_df(df) |
|
try: |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] |
|
except: |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] |
|
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST]) |
|
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ]) |
|
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
if 'Total Score' in df: |
|
df['Total Score'] = final_score |
|
else: |
|
df.insert(1, 'Total Score', final_score) |
|
if 'I2V Score' in df: |
|
df['I2V Score'] = i2v_score |
|
else: |
|
df.insert(2, 'I2V Score', i2v_score) |
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(3, 'Quality Score', quality_score) |
|
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
|
|
mask = df.iloc[:, 5:-5].isnull().any(axis=1) |
|
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan |
|
|
|
return df |
|
|
|
|
|
|
|
def get_final_score_quality(df, selected_columns): |
|
normalize_df = get_normalized_df(df) |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB]) |
|
|
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(1, 'Quality Score', quality_score) |
|
|
|
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns]) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
|
|
|
|
def get_baseline_df(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = get_final_score(df, checkbox_group.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
|
|
df = df[present_columns] |
|
|
|
df = df[df['Evaluated by'] == 'VBench Team'] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_baseline_df_quality(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(QUALITY_DIR) |
|
df = get_final_score_quality(df, checkbox_group_quality.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value |
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_baseline_df_i2v(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(I2V_DIR) |
|
df = get_final_score_i2v(df, checkbox_group_i2v.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value |
|
|
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_baseline_df_long(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(LONG_DIR) |
|
df = get_final_score(df, checkbox_group.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
|
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_all_df(selected_columns, dir=CSV_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def get_all_df_quality(selected_columns, dir=QUALITY_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score_quality(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def get_all_df_i2v(selected_columns, dir=I2V_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score_i2v(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def get_all_df_long(selected_columns, dir=LONG_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
|
|
def convert_scores_to_percentage(df): |
|
|
|
if "Sampled by" in df.columns: |
|
skip_col =3 |
|
else: |
|
skip_col =1 |
|
print(df) |
|
for column in df.columns[skip_col:]: |
|
|
|
|
|
|
|
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum() |
|
if valid_numeric_count > 0: |
|
df[column] = round(df[column] * 100,2) |
|
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x) |
|
|
|
return df |
|
|
|
def choose_all_quailty(): |
|
return gr.update(value=QUALITY_LIST) |
|
|
|
def choose_all_semantic(): |
|
return gr.update(value=SEMANTIC_LIST) |
|
|
|
def disable_all(): |
|
return gr.update(value=[]) |
|
|
|
def enable_all(): |
|
return gr.update(value=TASK_INFO) |
|
|
|
|
|
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False): |
|
updated_data = get_all_df(selected_columns, CSV_DIR) |
|
if vbench_team_sample: |
|
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] |
|
if vbench_team_eval: |
|
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] |
|
|
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE ) |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
def on_filter_model_size_method_change_quality(selected_columns): |
|
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR) |
|
|
|
|
|
selected_columns = [item for item in QUALITY_TAB if item in selected_columns] |
|
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False): |
|
updated_data = get_all_df_i2v(selected_columns, I2V_DIR) |
|
if vbench_team_sample: |
|
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] |
|
|
|
|
|
selected_columns = [item for item in I2V_TAB if item in selected_columns] |
|
present_columns = MODEL_INFO_TAB_I2V + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False): |
|
updated_data = get_all_df_long(selected_columns, LONG_DIR) |
|
if vbench_team_sample: |
|
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] |
|
if vbench_team_eval: |
|
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team'] |
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
|
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
lines=14, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=0.2): |
|
choosen_q = gr.Button("Select Quality Dimensions") |
|
choosen_s = gr.Button("Select Semantic Dimensions") |
|
|
|
disable_b = gr.Button("Deselect All") |
|
|
|
with gr.Column(scale=0.8): |
|
vbench_team_filter = gr.Checkbox( |
|
label="Sampled by VBench Team (Uncheck to view all submissions)", |
|
value=False, |
|
interactive=True |
|
) |
|
vbench_validate_filter = gr.Checkbox( |
|
label="Evaluated by VBench Team (Uncheck to view all submissions)", |
|
value=True, |
|
interactive=True |
|
) |
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=DEFAULT_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
height=700, |
|
) |
|
|
|
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component) |
|
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component) |
|
|
|
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component) |
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component) |
|
vbench_team_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component) |
|
vbench_validate_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component) |
|
|
|
with gr.TabItem("Video Quality", elem_id="vbench-tab-table", id=2): |
|
with gr.Accordion("INSTRUCTION", open=False): |
|
citation_button = gr.Textbox( |
|
value=QUALITY_CLAIM_TEXT, |
|
label="", |
|
elem_id="quality-button", |
|
lines=2, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1.0): |
|
|
|
|
|
checkbox_group_quality = gr.CheckboxGroup( |
|
choices=QUALITY_TAB, |
|
value=QUALITY_TAB, |
|
label="Evaluation Quality Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component_quality = gr.components.Dataframe( |
|
value=get_baseline_df_quality, |
|
headers=COLUMN_NAMES_QUALITY, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality) |
|
|
|
|
|
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3): |
|
with gr.Accordion("NOTE", open=False): |
|
i2v_note_button = gr.Textbox( |
|
value=I2V_CLAIM_TEXT, |
|
label="", |
|
elem_id="quality-button", |
|
lines=3, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1.0): |
|
|
|
with gr.Row(): |
|
vbench_team_filter_i2v = gr.Checkbox( |
|
label="Sampled by VBench Team (Uncheck to view all submissions)", |
|
value=False, |
|
interactive=True |
|
) |
|
vbench_validate_filter_i2v = gr.Checkbox( |
|
label="Evaluated by VBench Team (Uncheck to view all submissions)", |
|
value=False, |
|
interactive=True |
|
) |
|
checkbox_group_i2v = gr.CheckboxGroup( |
|
choices=I2V_TAB, |
|
value=I2V_TAB, |
|
label="Evaluation Quality Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component_i2v = gr.components.Dataframe( |
|
value=get_baseline_df_i2v, |
|
headers=COLUMN_NAMES_I2V, |
|
type="pandas", |
|
datatype=I2V_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v) |
|
vbench_team_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v) |
|
vbench_validate_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v) |
|
|
|
with gr.TabItem("📊 VBench-Long", elem_id="vbench-tab-table", id=4): |
|
with gr.Row(): |
|
with gr.Accordion("INSTRUCTION", open=False): |
|
citation_button = gr.Textbox( |
|
value=LONG_CLAIM_TEXT, |
|
label="", |
|
elem_id="long-ins-button", |
|
lines=2, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=0.2): |
|
choosen_q_long = gr.Button("Select Quality Dimensions") |
|
choosen_s_long = gr.Button("Select Semantic Dimensions") |
|
enable_b_long = gr.Button("Select All") |
|
disable_b_long = gr.Button("Deselect All") |
|
|
|
with gr.Column(scale=0.8): |
|
with gr.Row(): |
|
vbench_team_filter_long = gr.Checkbox( |
|
label="Sampled by VBench Team (Uncheck to view all submissions)", |
|
value=False, |
|
interactive=True |
|
) |
|
vbench_validate_filter_long = gr.Checkbox( |
|
label="Evaluated by VBench Team (Uncheck to view all submissions)", |
|
value=False, |
|
interactive=True |
|
) |
|
checkbox_group_long = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=DEFAULT_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df_long, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
height=700, |
|
) |
|
|
|
choosen_q_long.click(choose_all_quailty, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component) |
|
choosen_s_long.click(choose_all_semantic, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component) |
|
enable_b_long.click(enable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component) |
|
disable_b_long.click(disable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component) |
|
checkbox_group_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component) |
|
vbench_team_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component) |
|
vbench_validate_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=5): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 [T2V]Submit here! ", elem_id="mvbench-tab-table", id=6): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("Here is a required field", elem_classes="markdown-text") |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="Required field" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line" |
|
) |
|
access_type = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.") |
|
|
|
with gr.Column(): |
|
model_link = gr.Textbox( |
|
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed." |
|
) |
|
team_name = gr.Textbox( |
|
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload" |
|
) |
|
contact_email = gr.Textbox( |
|
label="E-Mail(Will not be displayed)", placeholder="Required field" |
|
) |
|
with gr.Row(): |
|
gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text") |
|
with gr.Row(): |
|
release_time = gr.Textbox(label="Time of Publish", placeholder="1970-01-01") |
|
model_resolution = gr.Textbox(label="resolution", placeholder="Width x Height") |
|
model_fps = gr.Textbox(label="model fps", placeholder="FPS(int)") |
|
model_frame = gr.Textbox(label="model frame count", placeholder="INT") |
|
model_video_length = gr.Textbox(label="model video length", placeholder="float(2.0)") |
|
model_checkpoint = gr.Textbox(label="model checkpoint", placeholder="optional") |
|
model_commit_id = gr.Textbox(label="github commit id", placeholder='main') |
|
model_video_format = gr.Textbox(label="pipeline format", placeholder='mp4') |
|
with gr.Column(): |
|
input_file = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False) |
|
fail_textbox = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False) |
|
|
|
|
|
submission_result = gr.Markdown() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("🚀 [I2V]Submit here! ", elem_id="mvbench-i2v-tab-table", id=7): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("Here is a required field", elem_classes="markdown-text") |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox_i2v = gr.Textbox( |
|
label="Model name", placeholder="Required field" |
|
) |
|
revision_name_textbox_i2v = gr.Textbox( |
|
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line" |
|
) |
|
access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.") |
|
|
|
|
|
with gr.Column(): |
|
model_link_i2v = gr.Textbox( |
|
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed." |
|
) |
|
team_name_i2v = gr.Textbox( |
|
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload" |
|
) |
|
contact_email_i2v = gr.Textbox( |
|
label="E-Mail(Will not be displayed)", placeholder="Required field" |
|
) |
|
with gr.Row(): |
|
gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text") |
|
with gr.Row(): |
|
release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01") |
|
model_resolution_i2v = gr.Textbox(label="resolution", placeholder="Width x Height") |
|
model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)") |
|
model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT") |
|
model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)") |
|
model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional") |
|
model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main') |
|
model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4') |
|
with gr.Column(): |
|
input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary') |
|
submit_button_i2v = gr.Button("Submit Eval") |
|
submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False) |
|
fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False) |
|
|
|
|
|
submission_result_i2v = gr.Markdown() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df() |
|
return value1 |
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
|
|
|
|
block.launch() |
|
|