Homebax commited on
Commit
2615222
·
verified ·
1 Parent(s): 8557094

Upload 4 files

Browse files
Files changed (4) hide show
  1. __init__.py +6 -0
  2. generation.py +421 -0
  3. model.py +495 -0
  4. tokenizer.py +68 -0
__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
3
+
4
+ from .generation import Llama, Dialog
5
+ from .model import ModelArgs, Transformer
6
+ from .tokenizer import Tokenizer
generation.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
3
+
4
+ import json
5
+ import os
6
+ import sys
7
+ import time
8
+ from pathlib import Path
9
+ from typing import List, Literal, Optional, Tuple, TypedDict
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from fairscale.nn.model_parallel.initialize import (
14
+ get_model_parallel_rank,
15
+ initialize_model_parallel,
16
+ model_parallel_is_initialized,
17
+ )
18
+
19
+ from llama.model import ModelArgs, Transformer
20
+ from llama.tokenizer import Tokenizer
21
+
22
+ Role = Literal["system", "user", "assistant"]
23
+
24
+
25
+ class Message(TypedDict):
26
+ role: Role
27
+ content: str
28
+
29
+
30
+ class CompletionPrediction(TypedDict, total=False):
31
+ generation: str
32
+ tokens: List[str] # not required
33
+ logprobs: List[float] # not required
34
+
35
+
36
+ class ChatPrediction(TypedDict, total=False):
37
+ generation: Message
38
+ tokens: List[str] # not required
39
+ logprobs: List[float] # not required
40
+
41
+
42
+ Dialog = List[Message]
43
+
44
+ B_INST, E_INST = "[INST]", "[/INST]"
45
+ B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
46
+
47
+ SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
48
+ UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."
49
+
50
+
51
+ class Llama:
52
+ @staticmethod
53
+ def build(
54
+ ckpt_dir: str,
55
+ tokenizer_path: str,
56
+ max_seq_len: int,
57
+ max_batch_size: int,
58
+ model_parallel_size: Optional[int] = None,
59
+ seed: int = 1,
60
+ ) -> "Llama":
61
+ """
62
+ Build a Llama instance by initializing and loading a pre-trained model.
63
+
64
+ Args:
65
+ ckpt_dir (str): Path to the directory containing checkpoint files.
66
+ tokenizer_path (str): Path to the tokenizer file.
67
+ max_seq_len (int): Maximum sequence length for input text.
68
+ max_batch_size (int): Maximum batch size for inference.
69
+ model_parallel_size (Optional[int], optional): Number of model parallel processes.
70
+ If not provided, it's determined from the environment. Defaults to None.
71
+
72
+ Returns:
73
+ Llama: An instance of the Llama class with the loaded model and tokenizer.
74
+
75
+ Raises:
76
+ AssertionError: If there are no checkpoint files in the specified directory,
77
+ or if the model parallel size does not match the number of checkpoint files.
78
+
79
+ Note:
80
+ This method initializes the distributed process group, sets the device to CUDA,
81
+ and loads the pre-trained model and tokenizer.
82
+
83
+ """
84
+ if not torch.distributed.is_initialized():
85
+ torch.distributed.init_process_group("nccl")
86
+ if not model_parallel_is_initialized():
87
+ if model_parallel_size is None:
88
+ model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
89
+ initialize_model_parallel(model_parallel_size)
90
+
91
+ local_rank = int(os.environ.get("LOCAL_RANK", 0))
92
+ torch.cuda.set_device(local_rank)
93
+
94
+ # seed must be the same in all processes
95
+ torch.manual_seed(seed)
96
+
97
+ if local_rank > 0:
98
+ sys.stdout = open(os.devnull, "w")
99
+
100
+ start_time = time.time()
101
+ checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
102
+ assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
103
+ assert model_parallel_size == len(
104
+ checkpoints
105
+ ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
106
+ ckpt_path = checkpoints[get_model_parallel_rank()]
107
+ checkpoint = torch.load(ckpt_path, map_location="cpu")
108
+ with open(Path(ckpt_dir) / "params.json", "r") as f:
109
+ params = json.loads(f.read())
110
+
111
+ model_args: ModelArgs = ModelArgs(
112
+ max_seq_len=max_seq_len,
113
+ max_batch_size=max_batch_size,
114
+ **params,
115
+ )
116
+ tokenizer = Tokenizer(model_path=tokenizer_path)
117
+ model_args.vocab_size = tokenizer.n_words
118
+ torch.set_default_tensor_type(torch.cuda.HalfTensor)
119
+ model = Transformer(model_args)
120
+ model.load_state_dict(checkpoint, strict=False)
121
+ print(f"Loaded in {time.time() - start_time:.2f} seconds")
122
+
123
+ return Llama(model, tokenizer)
124
+
125
+ def __init__(self, model: Transformer, tokenizer: Tokenizer):
126
+ self.model = model
127
+ self.tokenizer = tokenizer
128
+
129
+ @torch.inference_mode()
130
+ def generate(
131
+ self,
132
+ prompt_tokens: List[List[int]],
133
+ max_gen_len: int,
134
+ temperature: float = 0.6,
135
+ top_p: float = 0.9,
136
+ logprobs: bool = False,
137
+ echo: bool = False,
138
+ ) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
139
+ """
140
+ Generate text sequences based on provided prompts using the language generation model.
141
+
142
+ Args:
143
+ prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
144
+ max_gen_len (int): Maximum length of the generated text sequence.
145
+ temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
146
+ top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
147
+ logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
148
+ echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
149
+
150
+ Returns:
151
+ Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
152
+
153
+ Note:
154
+ This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
155
+ If logprobs is True, token log probabilities are computed for each generated token.
156
+
157
+ """
158
+ params = self.model.params
159
+ bsz = len(prompt_tokens)
160
+ assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
161
+
162
+ min_prompt_len = min(len(t) for t in prompt_tokens)
163
+ max_prompt_len = max(len(t) for t in prompt_tokens)
164
+ assert max_prompt_len <= params.max_seq_len
165
+ total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
166
+
167
+ pad_id = self.tokenizer.pad_id
168
+ tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
169
+ for k, t in enumerate(prompt_tokens):
170
+ tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
171
+ if logprobs:
172
+ token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
173
+
174
+ prev_pos = 0
175
+ eos_reached = torch.tensor([False] * bsz, device="cuda")
176
+ input_text_mask = tokens != pad_id
177
+ if min_prompt_len == total_len:
178
+ logits = self.model.forward(tokens, prev_pos)
179
+ token_logprobs = -F.cross_entropy(
180
+ input=logits.transpose(1, 2),
181
+ target=tokens,
182
+ reduction="none",
183
+ ignore_index=pad_id,
184
+ )
185
+
186
+ for cur_pos in range(min_prompt_len, total_len):
187
+ logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
188
+ if temperature > 0:
189
+ probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
190
+ next_token = sample_top_p(probs, top_p)
191
+ else:
192
+ next_token = torch.argmax(logits[:, -1], dim=-1)
193
+
194
+ next_token = next_token.reshape(-1)
195
+ # only replace token if prompt has already been generated
196
+ next_token = torch.where(
197
+ input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
198
+ )
199
+ tokens[:, cur_pos] = next_token
200
+ if logprobs:
201
+ token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
202
+ input=logits.transpose(1, 2),
203
+ target=tokens[:, prev_pos + 1 : cur_pos + 1],
204
+ reduction="none",
205
+ ignore_index=pad_id,
206
+ )
207
+ eos_reached |= (~input_text_mask[:, cur_pos]) & (
208
+ next_token == self.tokenizer.eos_id
209
+ )
210
+ prev_pos = cur_pos
211
+ if all(eos_reached):
212
+ break
213
+
214
+ if logprobs:
215
+ token_logprobs = token_logprobs.tolist()
216
+ out_tokens, out_logprobs = [], []
217
+ for i, toks in enumerate(tokens.tolist()):
218
+ # cut to max gen len
219
+ start = 0 if echo else len(prompt_tokens[i])
220
+ toks = toks[start : len(prompt_tokens[i]) + max_gen_len]
221
+ probs = None
222
+ if logprobs:
223
+ probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len]
224
+ # cut to eos tok if any
225
+ if self.tokenizer.eos_id in toks:
226
+ eos_idx = toks.index(self.tokenizer.eos_id)
227
+ toks = toks[:eos_idx]
228
+ probs = probs[:eos_idx] if logprobs else None
229
+ out_tokens.append(toks)
230
+ out_logprobs.append(probs)
231
+ return (out_tokens, out_logprobs if logprobs else None)
232
+
233
+ def text_completion(
234
+ self,
235
+ prompts: List[str],
236
+ temperature: float = 0.6,
237
+ top_p: float = 0.9,
238
+ max_gen_len: Optional[int] = None,
239
+ logprobs: bool = False,
240
+ echo: bool = False,
241
+ ) -> List[CompletionPrediction]:
242
+ """
243
+ Perform text completion for a list of prompts using the language generation model.
244
+
245
+ Args:
246
+ prompts (List[str]): List of text prompts for completion.
247
+ temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
248
+ top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
249
+ max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
250
+ If not provided, it's set to the model's maximum sequence length minus 1.
251
+ logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
252
+ echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
253
+
254
+ Returns:
255
+ List[CompletionPrediction]: List of completion predictions, each containing the generated text completion.
256
+
257
+ Note:
258
+ This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
259
+ If logprobs is True, token log probabilities are computed for each generated token.
260
+
261
+ """
262
+ if max_gen_len is None:
263
+ max_gen_len = self.model.params.max_seq_len - 1
264
+ prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
265
+ generation_tokens, generation_logprobs = self.generate(
266
+ prompt_tokens=prompt_tokens,
267
+ max_gen_len=max_gen_len,
268
+ temperature=temperature,
269
+ top_p=top_p,
270
+ logprobs=logprobs,
271
+ echo=echo,
272
+ )
273
+ if logprobs:
274
+ return [
275
+ {
276
+ "generation": self.tokenizer.decode(t),
277
+ "tokens": [self.tokenizer.decode(x) for x in t],
278
+ "logprobs": logprobs_i,
279
+ }
280
+ for t, logprobs_i in zip(generation_tokens, generation_logprobs)
281
+ ]
282
+ return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens]
283
+
284
+ def chat_completion(
285
+ self,
286
+ dialogs: List[Dialog],
287
+ temperature: float = 0.6,
288
+ top_p: float = 0.9,
289
+ max_gen_len: Optional[int] = None,
290
+ logprobs: bool = False,
291
+ ) -> List[ChatPrediction]:
292
+ """
293
+ Generate assistant responses for a list of conversational dialogs using the language generation model.
294
+
295
+ Args:
296
+ dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages.
297
+ temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
298
+ top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
299
+ max_gen_len (Optional[int], optional): Maximum length of the generated response sequence.
300
+ If not provided, it's set to the model's maximum sequence length minus 1.
301
+ logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
302
+
303
+ Returns:
304
+ List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response.
305
+
306
+ Raises:
307
+ AssertionError: If the last message in a dialog is not from the user.
308
+ AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order.
309
+
310
+ Note:
311
+ This method generates assistant responses for the provided conversational dialogs.
312
+ It employs nucleus sampling to introduce controlled randomness in text generation.
313
+ If logprobs is True, token log probabilities are computed for each generated token.
314
+
315
+ """
316
+ if max_gen_len is None:
317
+ max_gen_len = self.model.params.max_seq_len - 1
318
+ prompt_tokens = []
319
+ unsafe_requests = []
320
+ for dialog in dialogs:
321
+ unsafe_requests.append(
322
+ any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog])
323
+ )
324
+ if dialog[0]["role"] == "system":
325
+ dialog = [
326
+ {
327
+ "role": dialog[1]["role"],
328
+ "content": B_SYS
329
+ + dialog[0]["content"]
330
+ + E_SYS
331
+ + dialog[1]["content"],
332
+ }
333
+ ] + dialog[2:]
334
+ assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
335
+ [msg["role"] == "assistant" for msg in dialog[1::2]]
336
+ ), (
337
+ "model only supports 'system', 'user' and 'assistant' roles, "
338
+ "starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
339
+ )
340
+ dialog_tokens: List[int] = sum(
341
+ [
342
+ self.tokenizer.encode(
343
+ f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
344
+ bos=True,
345
+ eos=True,
346
+ )
347
+ for prompt, answer in zip(
348
+ dialog[::2],
349
+ dialog[1::2],
350
+ )
351
+ ],
352
+ [],
353
+ )
354
+ assert (
355
+ dialog[-1]["role"] == "user"
356
+ ), f"Last message must be from user, got {dialog[-1]['role']}"
357
+ dialog_tokens += self.tokenizer.encode(
358
+ f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
359
+ bos=True,
360
+ eos=False,
361
+ )
362
+ prompt_tokens.append(dialog_tokens)
363
+
364
+ generation_tokens, generation_logprobs = self.generate(
365
+ prompt_tokens=prompt_tokens,
366
+ max_gen_len=max_gen_len,
367
+ temperature=temperature,
368
+ top_p=top_p,
369
+ logprobs=logprobs,
370
+ )
371
+ if logprobs:
372
+ return [
373
+ {
374
+ "generation": {
375
+ "role": "assistant",
376
+ "content": self.tokenizer.decode(t)
377
+ if not unsafe
378
+ else UNSAFE_ERROR,
379
+ },
380
+ "tokens": [self.tokenizer.decode(x) for x in t],
381
+ "logprobs": logprobs_i,
382
+ }
383
+ for t, logprobs_i, unsafe in zip(
384
+ generation_tokens, generation_logprobs, unsafe_requests
385
+ )
386
+ ]
387
+ return [
388
+ {
389
+ "generation": {
390
+ "role": "assistant",
391
+ "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR,
392
+ }
393
+ }
394
+ for t, unsafe in zip(generation_tokens, unsafe_requests)
395
+ ]
396
+
397
+
398
+ def sample_top_p(probs, p):
399
+ """
400
+ Perform top-p (nucleus) sampling on a probability distribution.
401
+
402
+ Args:
403
+ probs (torch.Tensor): Probability distribution tensor.
404
+ p (float): Probability threshold for top-p sampling.
405
+
406
+ Returns:
407
+ torch.Tensor: Sampled token indices.
408
+
409
+ Note:
410
+ Top-p sampling selects the smallest set of tokens whose cumulative probability mass
411
+ exceeds the threshold p. The distribution is renormalized based on the selected tokens.
412
+
413
+ """
414
+ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
415
+ probs_sum = torch.cumsum(probs_sort, dim=-1)
416
+ mask = probs_sum - probs_sort > p
417
+ probs_sort[mask] = 0.0
418
+ probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
419
+ next_token = torch.multinomial(probs_sort, num_samples=1)
420
+ next_token = torch.gather(probs_idx, -1, next_token)
421
+ return next_token
model.py ADDED
@@ -0,0 +1,495 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
3
+
4
+ import math
5
+ from dataclasses import dataclass
6
+ from typing import Optional, Tuple
7
+
8
+ import fairscale.nn.model_parallel.initialize as fs_init
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from fairscale.nn.model_parallel.layers import (
12
+ ColumnParallelLinear,
13
+ ParallelEmbedding,
14
+ RowParallelLinear,
15
+ )
16
+ from torch import nn
17
+
18
+
19
+ @dataclass
20
+ class ModelArgs:
21
+ dim: int = 4096
22
+ n_layers: int = 32
23
+ n_heads: int = 32
24
+ n_kv_heads: Optional[int] = None
25
+ vocab_size: int = -1 # defined later by tokenizer
26
+ multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
27
+ ffn_dim_multiplier: Optional[float] = None
28
+ norm_eps: float = 1e-5
29
+
30
+ max_batch_size: int = 32
31
+ max_seq_len: int = 2048
32
+
33
+
34
+ class RMSNorm(torch.nn.Module):
35
+ def __init__(self, dim: int, eps: float = 1e-6):
36
+ """
37
+ Initialize the RMSNorm normalization layer.
38
+
39
+ Args:
40
+ dim (int): The dimension of the input tensor.
41
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
42
+
43
+ Attributes:
44
+ eps (float): A small value added to the denominator for numerical stability.
45
+ weight (nn.Parameter): Learnable scaling parameter.
46
+
47
+ """
48
+ super().__init__()
49
+ self.eps = eps
50
+ self.weight = nn.Parameter(torch.ones(dim))
51
+
52
+ def _norm(self, x):
53
+ """
54
+ Apply the RMSNorm normalization to the input tensor.
55
+
56
+ Args:
57
+ x (torch.Tensor): The input tensor.
58
+
59
+ Returns:
60
+ torch.Tensor: The normalized tensor.
61
+
62
+ """
63
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
64
+
65
+ def forward(self, x):
66
+ """
67
+ Forward pass through the RMSNorm layer.
68
+
69
+ Args:
70
+ x (torch.Tensor): The input tensor.
71
+
72
+ Returns:
73
+ torch.Tensor: The output tensor after applying RMSNorm.
74
+
75
+ """
76
+ output = self._norm(x.float()).type_as(x)
77
+ return output * self.weight
78
+
79
+
80
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
81
+ """
82
+ Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
83
+
84
+ This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
85
+ and the end index 'end'. The 'theta' parameter scales the frequencies.
86
+ The returned tensor contains complex values in complex64 data type.
87
+
88
+ Args:
89
+ dim (int): Dimension of the frequency tensor.
90
+ end (int): End index for precomputing frequencies.
91
+ theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
92
+
93
+ Returns:
94
+ torch.Tensor: Precomputed frequency tensor with complex exponentials.
95
+
96
+
97
+
98
+
99
+ """
100
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
101
+ t = torch.arange(end, device=freqs.device) # type: ignore
102
+ freqs = torch.outer(t, freqs).float() # type: ignore
103
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
104
+ return freqs_cis
105
+
106
+
107
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
108
+ """
109
+ Reshape frequency tensor for broadcasting it with another tensor.
110
+
111
+ This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
112
+ for the purpose of broadcasting the frequency tensor during element-wise operations.
113
+
114
+ Args:
115
+ freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
116
+ x (torch.Tensor): Target tensor for broadcasting compatibility.
117
+
118
+ Returns:
119
+ torch.Tensor: Reshaped frequency tensor.
120
+
121
+ Raises:
122
+ AssertionError: If the frequency tensor doesn't match the expected shape.
123
+ AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
124
+ """
125
+ ndim = x.ndim
126
+ assert 0 <= 1 < ndim
127
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1])
128
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
129
+ return freqs_cis.view(*shape)
130
+
131
+
132
+ def apply_rotary_emb(
133
+ xq: torch.Tensor,
134
+ xk: torch.Tensor,
135
+ freqs_cis: torch.Tensor,
136
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
137
+ """
138
+ Apply rotary embeddings to input tensors using the given frequency tensor.
139
+
140
+ This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
141
+ frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
142
+ is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
143
+ returned as real tensors.
144
+
145
+ Args:
146
+ xq (torch.Tensor): Query tensor to apply rotary embeddings.
147
+ xk (torch.Tensor): Key tensor to apply rotary embeddings.
148
+ freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
149
+
150
+ Returns:
151
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
152
+
153
+
154
+
155
+ """
156
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
157
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
158
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
159
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
160
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
161
+ return xq_out.type_as(xq), xk_out.type_as(xk)
162
+
163
+
164
+ def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
165
+ """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
166
+ bs, slen, n_kv_heads, head_dim = x.shape
167
+ if n_rep == 1:
168
+ return x
169
+ return (
170
+ x[:, :, :, None, :]
171
+ .expand(bs, slen, n_kv_heads, n_rep, head_dim)
172
+ .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
173
+ )
174
+
175
+
176
+ class Attention(nn.Module):
177
+ """Multi-head attention module."""
178
+ def __init__(self, args: ModelArgs):
179
+ """
180
+ Initialize the Attention module.
181
+
182
+ Args:
183
+ args (ModelArgs): Model configuration parameters.
184
+
185
+ Attributes:
186
+ n_kv_heads (int): Number of key and value heads.
187
+ n_local_heads (int): Number of local query heads.
188
+ n_local_kv_heads (int): Number of local key and value heads.
189
+ n_rep (int): Number of repetitions for local heads.
190
+ head_dim (int): Dimension size of each attention head.
191
+ wq (ColumnParallelLinear): Linear transformation for queries.
192
+ wk (ColumnParallelLinear): Linear transformation for keys.
193
+ wv (ColumnParallelLinear): Linear transformation for values.
194
+ wo (RowParallelLinear): Linear transformation for output.
195
+ cache_k (torch.Tensor): Cached keys for attention.
196
+ cache_v (torch.Tensor): Cached values for attention.
197
+
198
+ """
199
+ super().__init__()
200
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
201
+ model_parallel_size = fs_init.get_model_parallel_world_size()
202
+ self.n_local_heads = args.n_heads // model_parallel_size
203
+ self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
204
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
205
+ self.head_dim = args.dim // args.n_heads
206
+
207
+ self.wq = ColumnParallelLinear(
208
+ args.dim,
209
+ args.n_heads * self.head_dim,
210
+ bias=False,
211
+ gather_output=False,
212
+ init_method=lambda x: x,
213
+ )
214
+ self.wk = ColumnParallelLinear(
215
+ args.dim,
216
+ self.n_kv_heads * self.head_dim,
217
+ bias=False,
218
+ gather_output=False,
219
+ init_method=lambda x: x,
220
+ )
221
+ self.wv = ColumnParallelLinear(
222
+ args.dim,
223
+ self.n_kv_heads * self.head_dim,
224
+ bias=False,
225
+ gather_output=False,
226
+ init_method=lambda x: x,
227
+ )
228
+ self.wo = RowParallelLinear(
229
+ args.n_heads * self.head_dim,
230
+ args.dim,
231
+ bias=False,
232
+ input_is_parallel=True,
233
+ init_method=lambda x: x,
234
+ )
235
+
236
+ self.cache_k = torch.zeros(
237
+ (
238
+ args.max_batch_size,
239
+ args.max_seq_len,
240
+ self.n_local_kv_heads,
241
+ self.head_dim,
242
+ )
243
+ ).cuda()
244
+ self.cache_v = torch.zeros(
245
+ (
246
+ args.max_batch_size,
247
+ args.max_seq_len,
248
+ self.n_local_kv_heads,
249
+ self.head_dim,
250
+ )
251
+ ).cuda()
252
+
253
+ def forward(
254
+ self,
255
+ x: torch.Tensor,
256
+ start_pos: int,
257
+ freqs_cis: torch.Tensor,
258
+ mask: Optional[torch.Tensor],
259
+ ):
260
+ """
261
+ Forward pass of the attention module.
262
+
263
+ Args:
264
+ x (torch.Tensor): Input tensor.
265
+ start_pos (int): Starting position for caching.
266
+ freqs_cis (torch.Tensor): Precomputed frequency tensor.
267
+ mask (torch.Tensor, optional): Attention mask tensor.
268
+
269
+ Returns:
270
+ torch.Tensor: Output tensor after attention.
271
+
272
+ """
273
+ bsz, seqlen, _ = x.shape
274
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
275
+
276
+ xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
277
+ xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
278
+ xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
279
+
280
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
281
+
282
+ self.cache_k = self.cache_k.to(xq)
283
+ self.cache_v = self.cache_v.to(xq)
284
+
285
+ self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
286
+ self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
287
+
288
+ keys = self.cache_k[:bsz, : start_pos + seqlen]
289
+ values = self.cache_v[:bsz, : start_pos + seqlen]
290
+
291
+ # repeat k/v heads if n_kv_heads < n_heads
292
+ keys = repeat_kv(keys, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
293
+ values = repeat_kv(values, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
294
+
295
+ xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
296
+ keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
297
+ values = values.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
298
+ scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
299
+ if mask is not None:
300
+ scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
301
+ scores = F.softmax(scores.float(), dim=-1).type_as(xq)
302
+ output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
303
+ output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
304
+ return self.wo(output)
305
+
306
+
307
+ class FeedForward(nn.Module):
308
+ def __init__(
309
+ self,
310
+ dim: int,
311
+ hidden_dim: int,
312
+ multiple_of: int,
313
+ ffn_dim_multiplier: Optional[float],
314
+ ):
315
+ """
316
+ Initialize the FeedForward module.
317
+
318
+ Args:
319
+ dim (int): Input dimension.
320
+ hidden_dim (int): Hidden dimension of the feedforward layer.
321
+ multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
322
+ ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
323
+
324
+ Attributes:
325
+ w1 (ColumnParallelLinear): Linear transformation for the first layer.
326
+ w2 (RowParallelLinear): Linear transformation for the second layer.
327
+ w3 (ColumnParallelLinear): Linear transformation for the third layer.
328
+
329
+ """
330
+ super().__init__()
331
+ hidden_dim = int(2 * hidden_dim / 3)
332
+ # custom dim factor multiplier
333
+ if ffn_dim_multiplier is not None:
334
+ hidden_dim = int(ffn_dim_multiplier * hidden_dim)
335
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
336
+
337
+ self.w1 = ColumnParallelLinear(
338
+ dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
339
+ )
340
+ self.w2 = RowParallelLinear(
341
+ hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
342
+ )
343
+ self.w3 = ColumnParallelLinear(
344
+ dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
345
+ )
346
+
347
+ def forward(self, x):
348
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
349
+
350
+
351
+ class TransformerBlock(nn.Module):
352
+ def __init__(self, layer_id: int, args: ModelArgs):
353
+ """
354
+ Initialize a TransformerBlock.
355
+
356
+ Args:
357
+ layer_id (int): Identifier for the layer.
358
+ args (ModelArgs): Model configuration parameters.
359
+
360
+ Attributes:
361
+ n_heads (int): Number of attention heads.
362
+ dim (int): Dimension size of the model.
363
+ head_dim (int): Dimension size of each attention head.
364
+ attention (Attention): Attention module.
365
+ feed_forward (FeedForward): FeedForward module.
366
+ layer_id (int): Identifier for the layer.
367
+ attention_norm (RMSNorm): Layer normalization for attention output.
368
+ ffn_norm (RMSNorm): Layer normalization for feedforward output.
369
+
370
+ """
371
+ super().__init__()
372
+ self.n_heads = args.n_heads
373
+ self.dim = args.dim
374
+ self.head_dim = args.dim // args.n_heads
375
+ self.attention = Attention(args)
376
+ self.feed_forward = FeedForward(
377
+ dim=args.dim,
378
+ hidden_dim=4 * args.dim,
379
+ multiple_of=args.multiple_of,
380
+ ffn_dim_multiplier=args.ffn_dim_multiplier,
381
+ )
382
+ self.layer_id = layer_id
383
+ self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
384
+ self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
385
+
386
+ def forward(
387
+ self,
388
+ x: torch.Tensor,
389
+ start_pos: int,
390
+ freqs_cis: torch.Tensor,
391
+ mask: Optional[torch.Tensor],
392
+ ):
393
+ """
394
+ Perform a forward pass through the TransformerBlock.
395
+
396
+ Args:
397
+ x (torch.Tensor): Input tensor.
398
+ start_pos (int): Starting position for attention caching.
399
+ freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
400
+ mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
401
+
402
+ Returns:
403
+ torch.Tensor: Output tensor after applying attention and feedforward layers.
404
+
405
+ """
406
+ h = x + self.attention(
407
+ self.attention_norm(x), start_pos, freqs_cis, mask
408
+ )
409
+ out = h + self.feed_forward(self.ffn_norm(h))
410
+ return out
411
+
412
+
413
+ class Transformer(nn.Module):
414
+ def __init__(self, params: ModelArgs):
415
+ """
416
+ Initialize a Transformer model.
417
+
418
+ Args:
419
+ params (ModelArgs): Model configuration parameters.
420
+
421
+ Attributes:
422
+ params (ModelArgs): Model configuration parameters.
423
+ vocab_size (int): Vocabulary size.
424
+ n_layers (int): Number of layers in the model.
425
+ tok_embeddings (ParallelEmbedding): Token embeddings.
426
+ layers (torch.nn.ModuleList): List of Transformer blocks.
427
+ norm (RMSNorm): Layer normalization for the model output.
428
+ output (ColumnParallelLinear): Linear layer for final output.
429
+ freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
430
+
431
+ """
432
+ super().__init__()
433
+ self.params = params
434
+ self.vocab_size = params.vocab_size
435
+ self.n_layers = params.n_layers
436
+
437
+ self.tok_embeddings = ParallelEmbedding(
438
+ params.vocab_size, params.dim, init_method=lambda x: x
439
+ )
440
+
441
+ self.layers = torch.nn.ModuleList()
442
+ for layer_id in range(params.n_layers):
443
+ self.layers.append(TransformerBlock(layer_id, params))
444
+
445
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
446
+ self.output = ColumnParallelLinear(
447
+ params.dim, params.vocab_size, bias=False, init_method=lambda x: x
448
+ )
449
+
450
+ self.freqs_cis = precompute_freqs_cis(
451
+ # Note that self.params.max_seq_len is multiplied by 2 because the token limit for the Llama 2 generation of models is 4096.
452
+ # Adding this multiplier instead of using 4096 directly allows for dynamism of token lengths while training or fine-tuning.
453
+ self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
454
+ )
455
+
456
+ @torch.inference_mode()
457
+ def forward(self, tokens: torch.Tensor, start_pos: int):
458
+ """
459
+ Perform a forward pass through the Transformer model.
460
+
461
+ Args:
462
+ tokens (torch.Tensor): Input token indices.
463
+ start_pos (int): Starting position for attention caching.
464
+
465
+ Returns:
466
+ torch.Tensor: Output logits after applying the Transformer model.
467
+
468
+ """
469
+ _bsz, seqlen = tokens.shape
470
+ h = self.tok_embeddings(tokens)
471
+ self.freqs_cis = self.freqs_cis.to(h.device)
472
+ freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
473
+
474
+ mask = None
475
+ if seqlen > 1:
476
+ mask = torch.full(
477
+ (seqlen, seqlen), float("-inf"), device=tokens.device
478
+ )
479
+
480
+ mask = torch.triu(mask, diagonal=1)
481
+
482
+ # When performing key-value caching, we compute the attention scores
483
+ # only for the new sequence. Thus, the matrix of scores is of size
484
+ # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
485
+ # j > cache_len + i, since row i corresponds to token cache_len + i.
486
+ mask = torch.hstack([
487
+ torch.zeros((seqlen, start_pos), device=tokens.device),
488
+ mask
489
+ ]).type_as(h)
490
+
491
+ for layer in self.layers:
492
+ h = layer(h, start_pos, freqs_cis, mask)
493
+ h = self.norm(h)
494
+ output = self.output(h).float()
495
+ return output
tokenizer.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
3
+
4
+ import os
5
+ from logging import getLogger
6
+ from typing import List
7
+
8
+ from sentencepiece import SentencePieceProcessor
9
+
10
+
11
+ logger = getLogger()
12
+
13
+
14
+ class Tokenizer:
15
+ """tokenizing and encoding/decoding text using SentencePiece."""
16
+ def __init__(self, model_path: str):
17
+ """
18
+ Initializes the Tokenizer with a SentencePiece model.
19
+
20
+ Args:
21
+ model_path (str): The path to the SentencePiece model file.
22
+ """
23
+ # reload tokenizer
24
+ assert os.path.isfile(model_path), model_path
25
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
26
+ logger.info(f"Reloaded SentencePiece model from {model_path}")
27
+
28
+ # BOS / EOS token IDs
29
+ self.n_words: int = self.sp_model.vocab_size()
30
+ self.bos_id: int = self.sp_model.bos_id()
31
+ self.eos_id: int = self.sp_model.eos_id()
32
+ self.pad_id: int = self.sp_model.pad_id()
33
+ logger.info(
34
+ f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
35
+ )
36
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
37
+
38
+ def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
39
+ """
40
+ Encodes a string into a list of token IDs.
41
+
42
+ Args:
43
+ s (str): The input string to be encoded.
44
+ bos (bool): Whether to prepend the beginning-of-sequence token.
45
+ eos (bool): Whether to append the end-of-sequence token.
46
+
47
+ Returns:
48
+ List[int]: A list of token IDs.
49
+ """
50
+ assert type(s) is str
51
+ t = self.sp_model.encode(s)
52
+ if bos:
53
+ t = [self.bos_id] + t
54
+ if eos:
55
+ t = t + [self.eos_id]
56
+ return t
57
+
58
+ def decode(self, t: List[int]) -> str:
59
+ """
60
+ Decodes a list of token IDs into a string.
61
+
62
+ Args:
63
+ t (List[int]): The list of token IDs to be decoded.
64
+
65
+ Returns:
66
+ str: The decoded string.
67
+ """
68
+ return self.sp_model.decode(t)