Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,28 @@ from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
|
|
5 |
from deepseek_vl.utils.io import load_pil_images
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
|
|
8 |
|
9 |
# Load the model and processor
|
10 |
model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
|
11 |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
12 |
tokenizer = vl_chat_processor.tokenizer
|
13 |
|
14 |
-
# Define the function for image description
|
15 |
-
|
|
|
16 |
try:
|
17 |
-
# Convert the PIL Image to a BytesIO object
|
18 |
image_byte_arr = BytesIO()
|
19 |
-
image.save(image_byte_arr, format="PNG")
|
20 |
-
image_byte_arr.seek(0)
|
21 |
|
22 |
-
# Define the conversation
|
23 |
conversation = [
|
24 |
{
|
25 |
"role": "User",
|
26 |
"content": f"<image_placeholder>{user_question}",
|
27 |
-
"images": [image_byte_arr]
|
28 |
},
|
29 |
{
|
30 |
"role": "Assistant",
|
@@ -32,35 +34,27 @@ def describe_image(image, user_question="Describe this image in great detail."):
|
|
32 |
}
|
33 |
]
|
34 |
|
35 |
-
# Convert byte array back to PIL image
|
36 |
-
pil_images = [Image.open(BytesIO(image_byte_arr.read()))]
|
37 |
-
image_byte_arr.seek(0)
|
38 |
|
39 |
-
#
|
40 |
prepare_inputs = vl_chat_processor(
|
41 |
conversations=conversation,
|
42 |
images=pil_images,
|
43 |
force_batchify=True
|
44 |
-
)
|
45 |
-
|
46 |
-
# Convert all tensors in prepare_inputs to float32 for CPU compatibility
|
47 |
-
for key in prepare_inputs:
|
48 |
-
if isinstance(prepare_inputs[key], torch.Tensor):
|
49 |
-
prepare_inputs[key] = prepare_inputs[key].to(dtype=torch.float32)
|
50 |
|
51 |
-
# Load
|
52 |
-
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
53 |
-
model_path,
|
54 |
-
trust_remote_code=True
|
55 |
-
).float().eval() # Convert all weights to float32
|
56 |
|
57 |
-
# Generate embeddings
|
58 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
59 |
|
60 |
-
# Generate
|
61 |
outputs = vl_gpt.language_model.generate(
|
62 |
inputs_embeds=inputs_embeds,
|
63 |
-
attention_mask=prepare_inputs
|
64 |
pad_token_id=tokenizer.eos_token_id,
|
65 |
bos_token_id=tokenizer.bos_token_id,
|
66 |
eos_token_id=tokenizer.eos_token_id,
|
@@ -69,36 +63,38 @@ def describe_image(image, user_question="Describe this image in great detail."):
|
|
69 |
use_cache=True
|
70 |
)
|
71 |
|
72 |
-
# Decode the
|
73 |
-
answer = tokenizer.decode(outputs[0].tolist(), skip_special_tokens=True)
|
74 |
return answer
|
75 |
|
76 |
except Exception as e:
|
|
|
77 |
return f"Error: {str(e)}"
|
78 |
|
79 |
# Gradio interface
|
80 |
def gradio_app():
|
81 |
with gr.Blocks() as demo:
|
82 |
-
gr.Markdown("# Image Description with DeepSeek VL 1.3b
|
83 |
|
84 |
with gr.Row():
|
85 |
image_input = gr.Image(type="pil", label="Upload an Image")
|
86 |
question_input = gr.Textbox(
|
87 |
label="Question (optional)",
|
88 |
-
placeholder="Ask a question about the image",
|
89 |
lines=2
|
90 |
)
|
91 |
|
92 |
output_text = gr.Textbox(label="Image Description", interactive=False)
|
|
|
93 |
submit_btn = gr.Button("Generate Description")
|
94 |
|
95 |
submit_btn.click(
|
96 |
fn=describe_image,
|
97 |
-
inputs=[image_input, question_input],
|
98 |
outputs=output_text
|
99 |
)
|
100 |
|
101 |
demo.launch()
|
102 |
|
103 |
-
# Launch the app
|
104 |
gradio_app()
|
|
|
5 |
from deepseek_vl.utils.io import load_pil_images
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
+
import spaces # Import spaces for ZeroGPU support
|
9 |
|
10 |
# Load the model and processor
|
11 |
model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
|
12 |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
13 |
tokenizer = vl_chat_processor.tokenizer
|
14 |
|
15 |
+
# Define the function for image description with ZeroGPU support
|
16 |
+
@spaces.GPU # Ensures GPU allocation for this function
|
17 |
+
def describe_image(image, user_question="Solve the problem in the image"):
|
18 |
try:
|
19 |
+
# Convert the PIL Image to a BytesIO object for compatibility
|
20 |
image_byte_arr = BytesIO()
|
21 |
+
image.save(image_byte_arr, format="PNG") # Save image in PNG format
|
22 |
+
image_byte_arr.seek(0) # Move pointer to the start
|
23 |
|
24 |
+
# Define the conversation, using the user's question
|
25 |
conversation = [
|
26 |
{
|
27 |
"role": "User",
|
28 |
"content": f"<image_placeholder>{user_question}",
|
29 |
+
"images": [image_byte_arr] # Pass the image byte array instead of an object
|
30 |
},
|
31 |
{
|
32 |
"role": "Assistant",
|
|
|
34 |
}
|
35 |
]
|
36 |
|
37 |
+
# Convert image byte array back to a PIL image for processing
|
38 |
+
pil_images = [Image.open(BytesIO(image_byte_arr.read()))] # Convert byte back to PIL Image
|
39 |
+
image_byte_arr.seek(0) # Reset the byte stream again for reuse
|
40 |
|
41 |
+
# Load images and prepare the inputs
|
42 |
prepare_inputs = vl_chat_processor(
|
43 |
conversations=conversation,
|
44 |
images=pil_images,
|
45 |
force_batchify=True
|
46 |
+
).to('cuda')
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Load and prepare the model
|
49 |
+
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda().eval()
|
|
|
|
|
|
|
50 |
|
51 |
+
# Generate embeddings from the image input
|
52 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
53 |
|
54 |
+
# Generate the model's response
|
55 |
outputs = vl_gpt.language_model.generate(
|
56 |
inputs_embeds=inputs_embeds,
|
57 |
+
attention_mask=prepare_inputs.attention_mask,
|
58 |
pad_token_id=tokenizer.eos_token_id,
|
59 |
bos_token_id=tokenizer.bos_token_id,
|
60 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
63 |
use_cache=True
|
64 |
)
|
65 |
|
66 |
+
# Decode the generated tokens into text
|
67 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
68 |
return answer
|
69 |
|
70 |
except Exception as e:
|
71 |
+
# Provide detailed error information
|
72 |
return f"Error: {str(e)}"
|
73 |
|
74 |
# Gradio interface
|
75 |
def gradio_app():
|
76 |
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# Image Description with DeepSeek VL 1.3b 🐬\n### Upload an image and ask a question about it.")
|
78 |
|
79 |
with gr.Row():
|
80 |
image_input = gr.Image(type="pil", label="Upload an Image")
|
81 |
question_input = gr.Textbox(
|
82 |
label="Question (optional)",
|
83 |
+
placeholder="Ask a question about the image (e.g., 'What is happening in this image?')",
|
84 |
lines=2
|
85 |
)
|
86 |
|
87 |
output_text = gr.Textbox(label="Image Description", interactive=False)
|
88 |
+
|
89 |
submit_btn = gr.Button("Generate Description")
|
90 |
|
91 |
submit_btn.click(
|
92 |
fn=describe_image,
|
93 |
+
inputs=[image_input, question_input], # Pass both image and question as inputs
|
94 |
outputs=output_text
|
95 |
)
|
96 |
|
97 |
demo.launch()
|
98 |
|
99 |
+
# Launch the Gradio app
|
100 |
gradio_app()
|