Spaces:
Sleeping
Sleeping
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image,ImageDraw | |
import requests | |
import gradio as gr | |
from gtts import gTTS | |
import random | |
from collections import Counter | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
# you can specify the revision tag if you don't want the timm dependency | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
# let's only keep detections with score > 0.9 | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) | |
# Load model and processor | |
model_name = "facebook/detr-resnet-50" | |
processor = DetrImageProcessor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
# Move model to GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Function to generate random colors | |
def random_color(): | |
return "#{:02x}{:02x}{:02x}".format(random.randint(100, 255), random.randint(100, 255), random.randint(100, 255)) | |
# Object detection function | |
def detect_objects(image): | |
# Resize image for better detection | |
image = image.resize((800, 800)) | |
# Process image | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Extract bounding boxes and labels | |
target_sizes = [image.size[::-1]] | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0] | |
# Apply confidence threshold | |
keep = results["scores"] > 0.5 | |
boxes = results["boxes"][keep] | |
labels = results["labels"][keep] | |
# Create a copy of the image | |
image_draw = image.copy() | |
draw = ImageDraw.Draw(image_draw) | |
label_counts = Counter() | |
colors = {} | |
# Draw bounding boxes and count labels | |
for box, label in zip(boxes, labels): | |
box = [int(i) for i in box.tolist()] | |
label_text = model.config.id2label[label.item()] | |
label_counts[label_text] += 1 # Count occurrences | |
if label_text not in colors: | |
colors[label_text] = random_color() | |
draw.rectangle(box, outline=colors[label_text], width=5) | |
# Prepare HTML output for labels | |
styled_labels = [ | |
f"<span style='background-color:{colors[label]}; color:white; padding:8px 15px; border-radius:10px; margin-right:10px;'>" | |
f"{label} (x{count})</span>" | |
for label, count in label_counts.items() | |
] | |
labels_html = "<div style='display:flex; flex-wrap:wrap; gap:10px;'>" + " ".join(styled_labels) + "</div>" | |
# Convert detected objects into speech | |
detected_objects = ", ".join([f"{label} ({count} times)" for label, count in label_counts.items()]) | |
description = f"I detected the following objects: {detected_objects}." if detected_objects else "No objects detected, please try another image." | |
# Save audio | |
audio_path = "detected_objects.mp3" | |
tts = gTTS(description) | |
tts.save(audio_path) | |
return image_draw, labels_html, audio_path | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil", label="Upload an Image"), | |
outputs=[ | |
gr.Image(label="Detected Objects"), | |
gr.HTML(label="Detected Labels"), | |
gr.Audio(label="Audio Description") | |
], | |
title="AI Assistant for Visually Impaired", | |
description="This app detects objects in an image and provides an audio description." | |
) | |
# Launch | |
interface.launch() | |