File size: 8,968 Bytes
05afd51
 
 
 
 
6feafa3
05afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e3aca
05afd51
87e3aca
05afd51
87e3aca
05afd51
87e3aca
05afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89411fa
 
05afd51
 
 
 
 
 
 
48a6ec4
05afd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
#%matplotlib inline

np.random.seed(2)

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools

from tensorflow.keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import ReduceLROnPlateau, EarlyStopping

sns.set(style='white', context='notebook', palette='deep')

from PIL import Image
import os
from pylab import *
import re
from PIL import Image, ImageChops, ImageEnhance

def get_imlist(path):
    return [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.jpg') or f.endswith('.png')]

def convert_to_ela_image(path, quality):
    filename = path
    resaved_filename = filename.split('.')[0] + '.resaved.jpg'
    ELA_filename = filename.split('.')[0] + '.ela.png'

    im = Image.open(filename).convert('RGB')
    im.save(resaved_filename, 'JPEG', quality=quality)
    resaved_im = Image.open(resaved_filename)

    ela_im = ImageChops.difference(im, resaved_im)

    extrema = ela_im.getextrema()
    max_diff = max([ex[1] for ex in extrema])
    if max_diff == 0:
        max_diff = 1
    scale = 255.0 / max_diff

    ela_im = ImageEnhance.Brightness(ela_im).enhance(scale)

    return ela_im

Image.open('Images for Deep Fake/real_images/6401_0.jpg')

convert_to_ela_image('Images for Deep Fake/real_images/6401_0.jpg', 90)

Image.open('Images for Deep Fake/fake_images/1601_0.jpg')

convert_to_ela_image('Images for Deep Fake/fake_images/1601_0.jpg', 90)

import os
import csv
from PIL import Image  # Use PIL for image processing

def create_image_dataset_csv(fake_folder, real_folder, output_csv):
    # Initialize an empty list to store image information
    image_data = []

    # Process fake images
    fake_files = os.listdir(fake_folder)
    for filename in fake_files:
        if filename.endswith('.jpg') or filename.endswith('.png'):  # Adjust based on your image formats
            file_path = os.path.join(fake_folder, filename)
            label = 0  # Assign label 0 for fake
            image_data.append((file_path, label))

    # Process real images
    real_files = os.listdir(real_folder)
    for filename in real_files:
        if filename.endswith('.jpg') or filename.endswith('.png'):  # Adjust based on your image formats
            file_path = os.path.join(real_folder, filename)
            label = 1  # Assign label 1 for real
            image_data.append((file_path, label))

    # Write image data to CSV file
    with open(output_csv, 'w', newline='') as csvfile:
        csv_writer = csv.writer(csvfile)
        csv_writer.writerow(['file_path', 'label'])  # Header row
        csv_writer.writerows(image_data)

    print(f"CSV file '{output_csv}' has been created successfully with {len(image_data)} entries.")

# Example usage:
fake_images_folder = 'Images for Deep Fake/fake_images'
real_images_folder = 'Images for Deep Fake/real_images'
output_csv_file = 'image_dataset.csv'

create_image_dataset_csv(fake_images_folder, real_images_folder, output_csv_file)

import pandas as pd

# dataset = pd.read_csv('datasets/dataset.csv')
dataset = pd.read_csv('image_dataset.csv')

dataset.head()

X = []
Y = []

X

for index, row in dataset.iterrows():
    X.append(array(convert_to_ela_image(row[0], 90).resize((128, 128))).flatten() / 255.0)
    Y.append(row[1])

X = np.array(X)
Y = to_categorical(Y, 2)

X = X.reshape(-1, 128, 128, 3)

X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.2, random_state=5)

model = Sequential()

model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid',
                 activation ='relu', input_shape = (128,128,3)))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid',
                 activation ='relu'))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(MaxPool2D(pool_size=(2,2)))

model.add(Dropout(0.25))
print("Input: ", model.input_shape)
print("Output: ", model.output_shape)

model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(2, activation = "softmax"))

model.summary()

optimizer = RMSprop(learning_rate=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)

model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])

early_stopping = EarlyStopping(monitor='val_acc',
                              min_delta=0,
                              patience=2,
                              verbose=0, mode='max')

epochs = 10
batch_size = 100

history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs,
          validation_data = (X_val, Y_val), verbose = 2, callbacks=[early_stopping])

# Plot the loss and accuracy curves for training and validation
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss")
legend = ax[0].legend(loc='best', shadow=True)

ax[1].plot(history.history['accuracy'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_accuracy'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)

from sklearn.metrics import confusion_matrix

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


# Predict the values from the validation dataset
Y_pred = model.predict(X_val)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(Y_val,axis = 1)

# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
sns.heatmap(confusion_mtx/np.sum(confusion_mtx), annot=True,
            fmt='.2%', cmap='Blues')

from sklearn.metrics import classification_report

print(classification_report(Y_true, Y_pred_classes))

#saving the trained cnn model
model.save("fake-image-detection.h5")

import gradio as gr
import numpy as np
from PIL import Image, ImageChops, ImageEnhance
from keras.models import load_model
import tensorflow as tf

# Load the trained model
model = load_model("fake-image-detection.h5")

# Function to convert an image to its ELA form
def convert_to_ela_image(image, quality=90):
    resaved_image = image.convert('RGB')
    resaved_image.save("resaved_image.jpg", 'JPEG', quality=quality)
    resaved_image = Image.open("resaved_image.jpg")

    ela_image = ImageChops.difference(image, resaved_image)

    extrema = ela_image.getextrema()
    max_diff = max([ex[1] for ex in extrema])
    if max_diff == 0:
        max_diff = 1
    scale = 255.0 / max_diff

    ela_image = ImageEnhance.Brightness(ela_image).enhance(scale)
    return ela_image

# Prediction function
def predict(image):
    # Convert the input image to an ELA image
    ela_image = convert_to_ela_image(image)
    ela_image = ela_image.resize((128, 128))  # Resize to match the input size of the model
    ela_array = np.array(ela_image).astype('float32') / 255.0
    ela_array = ela_array.reshape(1, 128, 128, 3)  # Reshape for model input

    # Make a prediction
    prediction = model.predict(ela_array)
    class_idx = np.argmax(prediction, axis=1)[0]

    # Map the prediction to labels
    labels = {0: "Fake", 1: "Real"}
    return labels[class_idx]

# Gradio interface
interface = gr.Interface(
    fn=predict,  # Prediction function
    inputs=gr.Image(type="pil"),  # Image input (PIL format)
    outputs="label",  # Output a label
    title="Deep Fake Detector",
    description="Upload an image to detect if it's a real or fake image using ELA and a trained CNN model."
)

# Launch the interface
interface.launch()