import gradio as gr from huggingface_hub import InferenceClient """ Copied from inference in colab notebook """ # import torch # # Monkey-patch to avoid CUDA initialization issues # torch.cuda.get_device_capability = lambda *args, **kwargs: (0, 0) # from unsloth.chat_templates import get_chat_template # from unsloth import FastLanguageModel # # IMPORTING MODEL AND TOKENIZER ———————— # max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! # dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ # load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # model, tokenizer = FastLanguageModel.from_pretrained( # model_name = "llama_lora_model_1", # max_seq_length = max_seq_length, # dtype = dtype, # load_in_4bit = load_in_4bit, # ) # tokenizer = get_chat_template( # tokenizer, # chat_template = "llama-3.1", # ) # FastLanguageModel.for_inference(model) # Enable native 2x faster inference # # RUNNING INFERENCE ———————————————————————— # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # inputs = tokenizer.apply_chat_template( # messages, # tokenize = True, # add_generation_prompt = True, # Must add for generation # return_tensors = "pt", # ) # outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True, # temperature = 1.5, min_p = 0.1) # response = tokenizer.batch_decode(outputs) # yield response """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient(model="https://huggingface.co/Heit39/llama_lora_model_1") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()