import gradio as gr from huggingface_hub import InferenceClient """ Copied from inference in colab notebook """ from transformers import AutoTokenizer , AutoModelForCausalLM , TextIteratorStreamer import torch from threading import Thread # Load model and tokenizer globally to avoid reloading for every request model_path = "Heit39/llama_lora_model_1" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False) # Load the base model (e.g., LLaMA) base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B-Instruct") # Load LoRA adapter from peft import PeftModel model = PeftModel.from_pretrained(base_model, model_path) # Define the response function # def respond( # message: str, # history: list[tuple[str, str]], # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # # Combine system message and history into a single prompt # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # # Create a single text prompt from the messages # prompt = "" # for msg in messages: # if msg["role"] == "system": # prompt += f"[System]: {msg['content']}\n\n" # elif msg["role"] == "user": # prompt += f"[User]: {msg['content']}\n\n" # elif msg["role"] == "assistant": # prompt += f"[Assistant]: {msg['content']}\n\n" # # Tokenize the prompt # inputs = tokenizer(prompt, return_tensors="pt", truncation=True) # input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU # # Generate response # output_ids = model.generate( # input_ids, # max_length=input_ids.shape[1] + max_tokens, # temperature=temperature, # top_p=top_p, # do_sample=True, # ) # # Decode the generated text # generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) # # Extract the assistant's response from the generated text # assistant_response = generated_text[len(prompt):].strip() # # Yield responses incrementally (simulate streaming) # response = "" # for token in assistant_response.split(): # Split tokens by whitespace # response += token + " " # yield response.strip() def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Combine system message and history into a single prompt messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Create a single text prompt from the messages prompt = "" for msg in messages: if msg["role"] == "system": prompt += f"[System]: {msg['content']}\n\n" elif msg["role"] == "user": prompt += f"[User]: {msg['content']}\n\n" elif msg["role"] == "assistant": prompt += f"[Assistant]: {msg['content']}\n\n" # Tokenize the prompt inputs = tokenizer(prompt, return_tensors="pt", truncation=True) input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU # Generate tokens incrementally streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) generation_kwargs = { "input_ids": input_ids, "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "do_sample": True, "streamer": streamer, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield responses as they are generated response = "" for token in streamer: response += token if "[Chatbot]:" in response: # Only stream the part after "[Chatbot]:" assistant_response = response.split("[Chatbot]:", 1)[1].strip() yield assistant_response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()