IST199655
commited on
Commit
Β·
b6e525e
1
Parent(s):
929827c
- app.py +72 -14
- requirements.txt +3 -1
app.py
CHANGED
@@ -2,10 +2,31 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
"""
|
5 |
-
|
6 |
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -25,19 +46,56 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
messages,
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
"""
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
"""
|
5 |
+
Copied from inference in colab notebook
|
6 |
"""
|
7 |
+
from unsloth.chat_templates import get_chat_template
|
8 |
+
from unsloth import FastLanguageModel
|
9 |
+
|
10 |
+
# IMPORTING MODEL AND TOKENIZER ββββββββ
|
11 |
+
|
12 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
13 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
14 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
15 |
|
16 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
17 |
+
model_name = "llama_lora_model_1",
|
18 |
+
max_seq_length = max_seq_length,
|
19 |
+
dtype = dtype,
|
20 |
+
load_in_4bit = load_in_4bit,
|
21 |
+
)
|
22 |
+
|
23 |
+
tokenizer = get_chat_template(
|
24 |
+
tokenizer,
|
25 |
+
chat_template = "llama-3.1",
|
26 |
+
)
|
27 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
28 |
+
|
29 |
+
# RUNNING INFERENCE ββββββββββββββββββββββββ
|
30 |
|
31 |
def respond(
|
32 |
message,
|
|
|
46 |
|
47 |
messages.append({"role": "user", "content": message})
|
48 |
|
49 |
+
inputs = tokenizer.apply_chat_template(
|
|
|
|
|
50 |
messages,
|
51 |
+
tokenize = True,
|
52 |
+
add_generation_prompt = True, # Must add for generation
|
53 |
+
return_tensors = "pt",
|
54 |
+
).to("cuda")
|
55 |
+
|
56 |
+
outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
57 |
+
temperature = 1.5, min_p = 0.1)
|
58 |
+
response = tokenizer.batch_decode(outputs)
|
59 |
+
|
60 |
+
yield response
|
61 |
+
|
62 |
+
"""
|
63 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
64 |
+
"""
|
65 |
+
# client = InferenceClient("llama_lora_model_1")
|
66 |
+
|
67 |
+
|
68 |
+
# def respond(
|
69 |
+
# message,
|
70 |
+
# history: list[tuple[str, str]],
|
71 |
+
# system_message,
|
72 |
+
# max_tokens,
|
73 |
+
# temperature,
|
74 |
+
# top_p,
|
75 |
+
# ):
|
76 |
+
# messages = [{"role": "system", "content": system_message}]
|
77 |
+
|
78 |
+
# for val in history:
|
79 |
+
# if val[0]:
|
80 |
+
# messages.append({"role": "user", "content": val[0]})
|
81 |
+
# if val[1]:
|
82 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
83 |
+
|
84 |
+
# messages.append({"role": "user", "content": message})
|
85 |
+
|
86 |
+
# response = ""
|
87 |
+
|
88 |
+
# for message in client.chat_completion(
|
89 |
+
# messages,
|
90 |
+
# max_tokens=max_tokens,
|
91 |
+
# stream=True,
|
92 |
+
# temperature=temperature,
|
93 |
+
# top_p=top_p,
|
94 |
+
# ):
|
95 |
+
# token = message.choices[0].delta.content
|
96 |
+
|
97 |
+
# response += token
|
98 |
+
# yield response
|
99 |
|
100 |
|
101 |
"""
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
|
3 |
+
unsloth
|