import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
Copied from inference in colab notebook | |
""" | |
from transformers import AutoTokenizer , AutoModelForCausalLM , TextIteratorStreamer | |
import torch | |
from threading import Thread | |
# Load model and tokenizer globally to avoid reloading for every request | |
model_path = "Heit39/llama_lora_model_1" | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False) | |
# Load the base model (e.g., LLaMA) | |
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B-Instruct") | |
# Load LoRA adapter | |
from peft import PeftModel | |
model = PeftModel.from_pretrained(base_model, model_path) | |
# Define the response function | |
# def respond( | |
# message: str, | |
# history: list[tuple[str, str]], | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# # Combine system message and history into a single prompt | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# # Create a single text prompt from the messages | |
# prompt = "" | |
# for msg in messages: | |
# if msg["role"] == "system": | |
# prompt += f"[System]: {msg['content']}\n\n" | |
# elif msg["role"] == "user": | |
# prompt += f"[User]: {msg['content']}\n\n" | |
# elif msg["role"] == "assistant": | |
# prompt += f"[Assistant]: {msg['content']}\n\n" | |
# # Tokenize the prompt | |
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True) | |
# input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU | |
# # Generate response | |
# output_ids = model.generate( | |
# input_ids, | |
# max_length=input_ids.shape[1] + max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# do_sample=True, | |
# ) | |
# # Decode the generated text | |
# generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# # Extract the assistant's response from the generated text | |
# assistant_response = generated_text[len(prompt):].strip() | |
# # Yield responses incrementally (simulate streaming) | |
# response = "" | |
# for token in assistant_response.split(): # Split tokens by whitespace | |
# response += token + " " | |
# yield response.strip() | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Combine system message and history into a single prompt | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize the messages | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize = True, | |
add_generation_prompt = True, # Must add for generation | |
return_tensors = "pt", | |
) | |
# Generate tokens incrementally | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) | |
generation_kwargs = { | |
"input_ids": inputs, | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"do_sample": True, | |
"streamer": streamer, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Yield responses as they are generated | |
response = "" | |
for token in streamer: | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |