iris / app.py
IST199655
a
12b9045
raw
history blame
4.55 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
Copied from inference in colab notebook
"""
from transformers import AutoTokenizer , AutoModelForCausalLM , TextIteratorStreamer
import torch
from threading import Thread
# Load model and tokenizer globally to avoid reloading for every request
model_path = "Heit39/llama_lora_model_1"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
# Load the base model (e.g., LLaMA)
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B-Instruct")
# Load LoRA adapter
from peft import PeftModel
model = PeftModel.from_pretrained(base_model, model_path)
# Define the response function
# def respond(
# message: str,
# history: list[tuple[str, str]],
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# # Combine system message and history into a single prompt
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# # Create a single text prompt from the messages
# prompt = ""
# for msg in messages:
# if msg["role"] == "system":
# prompt += f"[System]: {msg['content']}\n\n"
# elif msg["role"] == "user":
# prompt += f"[User]: {msg['content']}\n\n"
# elif msg["role"] == "assistant":
# prompt += f"[Assistant]: {msg['content']}\n\n"
# # Tokenize the prompt
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
# input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU
# # Generate response
# output_ids = model.generate(
# input_ids,
# max_length=input_ids.shape[1] + max_tokens,
# temperature=temperature,
# top_p=top_p,
# do_sample=True,
# )
# # Decode the generated text
# generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# # Extract the assistant's response from the generated text
# assistant_response = generated_text[len(prompt):].strip()
# # Yield responses incrementally (simulate streaming)
# response = ""
# for token in assistant_response.split(): # Split tokens by whitespace
# response += token + " "
# yield response.strip()
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# Combine system message and history into a single prompt
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize the messages
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
)
# Generate tokens incrementally
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
generation_kwargs = {
"input_ids": inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield responses as they are generated
response = ""
for token in streamer:
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()