File size: 9,490 Bytes
f36a10a
94a65e4
 
f36a10a
94a65e4
f36a10a
 
 
 
5e58061
f36a10a
94a65e4
f36a10a
 
207a2e4
 
 
94a65e4
 
 
 
207a2e4
94a65e4
 
207a2e4
1a2b17f
94a65e4
 
 
 
 
 
 
 
f36a10a
5e58061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f36a10a
207a2e4
f36a10a
d4f888d
f36a10a
 
207a2e4
 
f36a10a
 
 
 
 
94a65e4
 
f36a10a
207a2e4
 
f36a10a
 
 
 
4b98068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53687d
207a2e4
 
94a65e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b98068
f53687d
 
 
 
 
 
 
 
 
 
94a65e4
207a2e4
 
 
94a65e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f36a10a
 
207a2e4
116a946
f36a10a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207a2e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DebertaV2Tokenizer
import networkx as nx
import spacy
import pickle
import google.generativeai as genai
import json
import os
import dotenv
import plotly.graph_objects as go

# Load environment variables
dotenv.load_dotenv()

def load_models():
    """Load all required ML models"""
    nlp = spacy.load("en_core_web_sm")
    model_path = "./results/checkpoint-753"
    tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
    model = AutoModelForSequenceClassification.from_pretrained(model_path)
    model.eval()
    return nlp, tokenizer, model

def load_knowledge_graph():
    """Load and initialize knowledge graph"""
    graph_path = "./knowledge_graph_final.pkl"
    with open(graph_path, 'rb') as f:
        graph_data = pickle.load(f)
    knowledge_graph = nx.DiGraph()
    knowledge_graph.add_nodes_from(graph_data['nodes'].items())
    for u, edges in graph_data['edges'].items():
        for v, data in edges.items():
            knowledge_graph.add_edge(u, v, **data)
    return knowledge_graph


class KnowledgeGraphBuilder:
    def __init__(self):
        self.knowledge_graph = nx.DiGraph()
        
    def update_knowledge_graph(self, text, is_real, nlp):
        entities = extract_entities(text, nlp)
        for entity, entity_type in entities:
            if not self.knowledge_graph.has_node(entity):
                self.knowledge_graph.add_node(
                    entity,
                    type=entity_type,
                    real_count=1 if is_real else 0,
                    fake_count=0 if is_real else 1
                )
            else:
                if is_real:
                    self.knowledge_graph.nodes[entity]['real_count'] += 1
                else:
                    self.knowledge_graph.nodes[entity]['fake_count'] += 1

        for i, (entity1, _) in enumerate(entities):
            for entity2, _ in entities[i+1:]:
                if not self.knowledge_graph.has_edge(entity1, entity2):
                    self.knowledge_graph.add_edge(
                        entity1,
                        entity2,
                        weight=1,
                        is_real=is_real
                    )
                else:
                    self.knowledge_graph[entity1][entity2]['weight'] += 1


def setup_gemini():
    """Initialize Gemini model"""
    genai.configure(api_key=os.getenv("GEMINI_API"))
    model = genai.GenerativeModel('models/gemini-2.0-flash')
    return model

def predict_with_model(text, tokenizer, model):
    """Make predictions using the ML model"""
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_label = torch.argmax(probabilities, dim=-1).item()
    confidence = probabilities[0][predicted_label].item() * 100
    return "FAKE" if predicted_label == 1 else "REAL", confidence

def extract_entities(text, nlp):
    """Extract named entities from text"""
    doc = nlp(text)
    entities = [(ent.text, ent.label_) for ent in doc.ents]
    return entities

# def update_knowledge_graph(text, is_real, knowledge_graph, nlp, save=True, push_to_hf=True):
#     """Update knowledge graph with new information"""
#     entities = extract_entities(text, nlp)
#     for entity, entity_type in entities:
#         if not knowledge_graph.has_node(entity):
#             knowledge_graph.add_node(
#                 entity,
#                 type=entity_type,
#                 real_count=1 if is_real else 0,
#                 fake_count=0 if is_real else 1
#             )
#         else:
#             if is_real:
#                 knowledge_graph.nodes[entity]['real_count'] += 1
#             else:
#                 knowledge_graph.nodes[entity]['fake_count'] += 1

#     for i, (entity1, _) in enumerate(entities):
#         for entity2, _ in entities[i+1:]:
#             if not knowledge_graph.has_edge(entity1, entity2):
#                 knowledge_graph.add_edge(
#                     entity1,
#                     entity2,
#                     weight=1,
#                     is_real=is_real
#                 )
#             else:
#                 knowledge_graph[entity1][entity2]['weight'] += 1
#     if save:
#         from save_model import save_knowledge_graph, push_to_huggingface
#         filepath = save_knowledge_graph(knowledge_graph)
        
#         # Push to Hugging Face if requested
#         if push_to_hf:
#             repo_id = os.getenv("HF_REPO_ID", "HeheBoi0769/Nexus_NLP_model")
#             push_to_huggingface(filepath, repo_id)
    
#     return knowledge_graph

def update_knowledge_graph(text, is_real, knowledge_graph, nlp, save=True, push_to_hf=True):
    """Update knowledge graph with new information"""
    entities = extract_entities(text, nlp)
    for entity, entity_type in entities:
        if not knowledge_graph.has_node(entity):
            knowledge_graph.add_node(
                entity,
                type=entity_type,
                real_count=1 if is_real else 0,
                fake_count=0 if is_real else 1
            )
        else:
            if is_real:
                knowledge_graph.nodes[entity]['real_count'] += 1
            else:
                knowledge_graph.nodes[entity]['fake_count'] += 1

    for i, (entity1, _) in enumerate(entities):
        for entity2, _ in entities[i+1:]:
            if not knowledge_graph.has_edge(entity1, entity2):
                knowledge_graph.add_edge(
                    entity1,
                    entity2,
                    weight=1,
                    is_real=is_real
                )
            else:
                knowledge_graph[entity1][entity2]['weight'] += 1
    
    if save:
        from save_model import save_knowledge_graph, push_to_huggingface
        filepath = save_knowledge_graph(knowledge_graph)
        
        # Push to Hugging Face if requested
        if push_to_hf:
            repo_id = os.getenv("HF_REPO_ID", "HeheBoi0769/Nexus_NLP_model")
            push_to_huggingface(filepath, repo_id)
    
    return knowledge_graph

def predict_with_knowledge_graph(text, knowledge_graph, nlp):
    """Make predictions using the knowledge graph"""
    entities = extract_entities(text, nlp)
    real_score = 0
    fake_score = 0

    for entity, _ in entities:
        if knowledge_graph.has_node(entity):
            real_count = knowledge_graph.nodes[entity].get('real_count', 0)
            fake_count = knowledge_graph.nodes[entity].get('fake_count', 0)
            total = real_count + fake_count
            if total > 0:
                real_score += real_count / total
                fake_score += fake_count / total

    total_score = real_score + fake_score
    if total_score == 0:
        return "UNCERTAIN", 50.0
    
    if real_score > fake_score:
        confidence = (real_score / total_score) * 100
        return "REAL", confidence
    else:
        confidence = (fake_score / total_score) * 100
        return "FAKE", confidence

def analyze_content_gemini(model, text):
    """Analyze content using Gemini model"""
    prompt = f"""Analyze this news text and return a JSON object with the following exact structure:
    {{
        "gemini_analysis": {{
            "predicted_classification": "Real or Fake",
            "confidence_score": "0-100",
            "reasoning": ["point1", "point2"]
        }},
        "text_classification": {{
            "category": "",
            "writing_style": "Formal/Informal/Clickbait",
            "target_audience": "",
            "content_type": "news/opinion/editorial"
        }},
        "sentiment_analysis": {{
            "primary_emotion": "",
            "emotional_intensity": "1-10",
            "sensationalism_level": "High/Medium/Low",
            "bias_indicators": ["bias1", "bias2"],
            "tone": {{"formality": "formal/informal", "style": "Professional/Emotional/Neutral"}},
            "emotional_triggers": ["trigger1", "trigger2"]
        }},
        "entity_recognition": {{
            "source_credibility": "High/Medium/Low",
            "people": ["person1", "person2"],
            "organizations": ["org1", "org2"],
            "locations": ["location1", "location2"],
            "dates": ["date1", "date2"],
            "statistics": ["stat1", "stat2"]
        }},
        "context": {{
            "main_narrative": "",
            "supporting_elements": ["element1", "element2"],
            "key_claims": ["claim1", "claim2"],
            "narrative_structure": ""
        }},
        "fact_checking": {{
            "verifiable_claims": ["claim1", "claim2"],
            "evidence_present": "Yes/No",
            "fact_check_score": "0-100"
        }}
    }}

    Analyze this text and return only the JSON response: {text}"""
    
    response = model.generate_content(prompt)
    try:
        cleaned_text = response.text.strip()
        if cleaned_text.startswith('```json'):
            cleaned_text = cleaned_text[7:-3]
        return json.loads(cleaned_text)
    except json.JSONDecodeError:
        return {
            "gemini_analysis": {
                "predicted_classification": "UNCERTAIN",
                "confidence_score": "50",
                "reasoning": ["Analysis failed to generate valid JSON"]
            }
        }