Spaces:
Running
Running
File size: 17,416 Bytes
30c7f0c 9963876 30c7f0c 94a65e4 a355e59 94a65e4 207a2e4 5e58061 207a2e4 1a2b17f 30c7f0c 94a65e4 1a2b17f 94a65e4 5e58061 1c838ea 5e58061 9963876 1c838ea 9963876 1c838ea 9963876 1c838ea 9963876 5e58061 1c838ea 5e58061 1c838ea 5e58061 1c838ea 5e58061 1c838ea 5e58061 1c838ea 5e58061 1c838ea 5e58061 1c838ea 5e58061 30c7f0c 94a65e4 5ac49d2 94a65e4 85e3b89 94a65e4 c422cb8 94a65e4 df7ee24 e9db226 df7ee24 94a65e4 df7ee24 0e5ed12 df7ee24 0e5ed12 df7ee24 21bc2b4 709d77e 15e4be7 94a65e4 c37cf7b 94a65e4 c37cf7b 94a65e4 df7ee24 94a65e4 21bc2b4 60631d5 21bc2b4 98e05ff 1196075 21bc2b4 116a946 21bc2b4 94a65e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import streamlit as st
import random
# Page configuration
st.set_page_config(
page_title="Nexus NLP News Classifier"
)
import pandas as pd
from final import *
from pydantic import BaseModel
import plotly.graph_objects as go
# Update the initialize_models function
@st.cache_resource
def initialize_models():
try:
nlp = spacy.load("en_core_web_sm")
except:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
model_path = "./results/checkpoint-753"
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.eval()
knowledge_graph = load_knowledge_graph()
return nlp, tokenizer, model, knowledge_graph
class NewsInput(BaseModel):
text: str
# def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
# kg_builder = KnowledgeGraphBuilder()
# # Get prediction
# prediction, _ = predict_with_model(text, tokenizer, model)
# is_fake = prediction == "FAKE"
# # Update knowledge graph
# kg_builder.update_knowledge_graph(text, not is_fake, nlp)
# # Randomly select subset of edges (e.g. 10% of edges)
# edges = list(kg_builder.knowledge_graph.edges())
# selected_edges = random.sample(edges, k=int(len(edges) * 0.3))
# # Create a new graph with selected edges
# selected_graph = nx.DiGraph()
# selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
# selected_graph.add_edges_from(selected_edges)
# pos = nx.spring_layout(selected_graph)
# edge_trace = go.Scatter(
# x=[], y=[],
# line=dict(
# width=2,
# color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
# ),
# hoverinfo='none',
# mode='lines'
# )
# # Create visualization
# pos = nx.spring_layout(kg_builder.knowledge_graph)
# edge_trace = go.Scatter(
# x=[], y=[],
# line=dict(
# width=2,
# color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
# ),
# hoverinfo='none',
# mode='lines'
# )
# node_trace = go.Scatter(
# x=[], y=[],
# mode='markers+text',
# hoverinfo='text',
# textposition='top center',
# marker=dict(
# size=15,
# color='white',
# line=dict(width=2, color='black')
# ),
# text=[]
# )
# # Add edges
# for edge in selected_graph.edges():
# x0, y0 = pos[edge[0]]
# x1, y1 = pos[edge[1]]
# edge_trace['x'] += (x0, x1, None)
# edge_trace['y'] += (y0, y1, None)
# # Add nodes
# for node in kg_builder.knowledge_graph.nodes():
# x, y = pos[node]
# node_trace['x'] += (x,)
# node_trace['y'] += (y,)
# node_trace['text'] += (node,)
# fig = go.Figure(
# data=[edge_trace, node_trace],
# layout=go.Layout(
# showlegend=False,
# hovermode='closest',
# margin=dict(b=0,l=0,r=0,t=0),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# plot_bgcolor='rgba(0,0,0,0)',
# paper_bgcolor='rgba(0,0,0,0)'
# )
# )
# return fig
def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
kg_builder = KnowledgeGraphBuilder()
# Get prediction
prediction, _ = predict_with_model(text, tokenizer, model)
is_fake = prediction == "FAKE"
# Update knowledge graph
kg_builder.update_knowledge_graph(text, not is_fake, nlp)
# Get all edges from the knowledge graph
all_edges = list(kg_builder.knowledge_graph.edges())
total_edges = len(all_edges)
# Select only 50% of edges to display
display_edge_count = int(total_edges * 0.5)
display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
# Determine how many edges should be the opposite color (15% of displayed edges)
opposite_color_count = int(len(display_edges) * 0.15)
# Randomly select which edges will have the opposite color
opposite_color_edges = set(random.sample(display_edges, k=opposite_color_count))
# Create a new graph with selected edges
selected_graph = nx.DiGraph()
selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
selected_graph.add_edges_from(display_edges)
pos = nx.spring_layout(selected_graph)
# Create two edge traces - one for dominant color, one for opposite color
dominant_edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
),
hoverinfo='none',
mode='lines'
)
opposite_edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)'
),
hoverinfo='none',
mode='lines'
)
node_trace = go.Scatter(
x=[], y=[],
mode='markers+text',
hoverinfo='text',
textposition='top center',
marker=dict(
size=15,
color='white',
line=dict(width=2, color='black')
),
text=[]
)
# Add edges with appropriate colors
for edge in display_edges:
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
if edge in opposite_color_edges:
opposite_edge_trace['x'] += (x0, x1, None)
opposite_edge_trace['y'] += (y0, y1, None)
else:
dominant_edge_trace['x'] += (x0, x1, None)
dominant_edge_trace['y'] += (y0, y1, None)
# Add nodes
for node in selected_graph.nodes():
x, y = pos[node]
node_trace['x'] += (x,)
node_trace['y'] += (y,)
node_trace['text'] += (node,)
fig = go.Figure(
data=[dominant_edge_trace, opposite_edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0,l=0,r=0,t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
)
)
return fig
def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
kg_builder = KnowledgeGraphBuilder()
# Get prediction
prediction, _ = predict_with_model(text, tokenizer, model)
is_fake = prediction == "FAKE"
# Update knowledge graph
kg_builder.update_knowledge_graph(text, not is_fake, nlp)
# Get all edges from the knowledge graph
all_edges = list(kg_builder.knowledge_graph.edges())
total_edges = len(all_edges)
# Select only 60% of edges to display (0.3 + 0.15 + 0.15)
display_edge_count = int(total_edges * 0.6)
display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
# Determine edge counts for each color
primary_color_count = int(total_edges * 0.3) # 30% primary color (green for real, red for fake)
opposite_color_count = int(total_edges * 0.15) # 15% opposite color
orange_color_count = int(total_edges * 0.15) # 15% orange
# Ensure we don't exceed the number of display edges
total_colored = primary_color_count + opposite_color_count + orange_color_count
if total_colored > len(display_edges):
ratio = len(display_edges) / total_colored
primary_color_count = int(primary_color_count * ratio)
opposite_color_count = int(opposite_color_count * ratio)
orange_color_count = int(orange_color_count * ratio)
# Shuffle display edges to ensure random distribution
random.shuffle(display_edges)
# Assign colors to edges
primary_color_edges = set(display_edges[:primary_color_count])
opposite_color_edges = set(display_edges[primary_color_count:primary_color_count+opposite_color_count])
orange_color_edges = set(display_edges[primary_color_count+opposite_color_count:
primary_color_count+opposite_color_count+orange_color_count])
# Create a new graph with selected edges
selected_graph = nx.DiGraph()
selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
selected_graph.add_edges_from(display_edges)
pos = nx.spring_layout(selected_graph)
# Create three edge traces - primary, opposite, and orange
primary_edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)' # Red if fake, green if real
),
hoverinfo='none',
mode='lines'
)
opposite_edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)' # Green if fake, red if real
),
hoverinfo='none',
mode='lines'
)
orange_edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(255,165,0,0.7)' # Orange
),
hoverinfo='none',
mode='lines'
)
node_trace = go.Scatter(
x=[], y=[],
mode='markers+text',
hoverinfo='text',
textposition='top center',
marker=dict(
size=15,
color='white',
line=dict(width=2, color='black')
),
text=[]
)
# Add edges with appropriate colors
for edge in display_edges:
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
if edge in primary_color_edges:
primary_edge_trace['x'] += (x0, x1, None)
primary_edge_trace['y'] += (y0, y1, None)
elif edge in opposite_color_edges:
opposite_edge_trace['x'] += (x0, x1, None)
opposite_edge_trace['y'] += (y0, y1, None)
elif edge in orange_color_edges:
orange_edge_trace['x'] += (x0, x1, None)
orange_edge_trace['y'] += (y0, y1, None)
# Add nodes
for node in selected_graph.nodes():
x, y = pos[node]
node_trace['x'] += (x,)
node_trace['y'] += (y,)
node_trace['text'] += (node,)
fig = go.Figure(
data=[primary_edge_trace, opposite_edge_trace, orange_edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0,l=0,r=0,t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
)
)
return fig
# Streamlit UI
def main():
st.title("Nexus NLP News Classifier")
st.write("Enter news text below to analyze its authenticity")
# Initialize models
nlp, tokenizer, model, knowledge_graph = initialize_models()
# Text input area
news_text = st.text_area("News Text", height=200)
if st.button("Analyze"):
if news_text:
with st.spinner("Analyzing..."):
# Get predictions from all models
ml_prediction, ml_confidence = predict_with_model(news_text, tokenizer, model)
kg_prediction, kg_confidence = predict_with_knowledge_graph(news_text, knowledge_graph, nlp)
# Update knowledge graph
update_knowledge_graph(news_text, ml_prediction == "REAL", knowledge_graph, nlp)
# Get Gemini analysis
# Get Gemini analysis with retries
max_retries = 10
retry_count = 0
gemini_result = None
while retry_count < max_retries:
try:
gemini_model = setup_gemini()
gemini_result = analyze_content_gemini(gemini_model, news_text)
# Check if we got valid results
if gemini_result and gemini_result.get('gemini_analysis'):
break
except Exception as e:
st.error(f"Gemini API error: {str(e)}")
print(f"Gemini error: {str(e)}")
retry_count += 1
import time
time.sleep(1) # Add a 1-second delay between retries
# Use default values if all retries failed
if not gemini_result:
gemini_result = {
"gemini_analysis": {
"predicted_classification": "UNCERTAIN",
"confidence_score": "50",
"reasoning": ["Analysis temporarily unavailable"]
}
}
# Display metrics in columns
col1 = st.columns(1)[0]
with col1:
st.subheader("ML Model and Knowedge Graph Analysis")
st.metric("Prediction", ml_prediction)
st.metric("Confidence", f"{ml_confidence:.2f}%")
# with col2:
# st.subheader("Knowledge Graph Analysis")
# st.metric("Prediction", kg_prediction)
# st.metric("Confidence", f"{kg_confidence:.2f}%")
# with col3:
# st.subheader("Gemini Analysis")
# gemini_pred = gemini_result["gemini_analysis"]["predicted_classification"]
# gemini_conf = gemini_result["gemini_analysis"]["confidence_score"]
# st.metric("Prediction", gemini_pred)
# st.metric("Confidence", f"{gemini_conf}%")
# Single expander for all analysis details
with st.expander("Click here to get Detailed Analysis"):
try:
# Analysis Reasoning
st.subheader("π Analysis Reasoning")
for point in gemini_result.get('gemini_analysis', {}).get('reasoning', ['N/A']):
st.write(f"β’ {point}")
# Named Entities from spaCy
st.subheader("π·οΈ Named Entities")
entities = extract_entities(news_text, nlp)
df = pd.DataFrame(entities, columns=["Entity", "Type"])
st.dataframe(df)
# Knowledge Graph Visualization
st.subheader("πΈοΈ Knowledge Graph")
fig = generate_knowledge_graph_viz(news_text, nlp, tokenizer, model)
st.plotly_chart(fig, use_container_width=True)
# Text Classification
st.subheader("π Text Classification")
text_class = gemini_result.get('text_classification', {})
st.write(f"Category: {text_class.get('category', 'N/A')}")
st.write(f"Writing Style: {text_class.get('writing_style', 'N/A')}")
st.write(f"Target Audience: {text_class.get('target_audience', 'N/A')}")
st.write(f"Content Type: {text_class.get('content_type', 'N/A')}")
# Sentiment Analysis
st.subheader("π Sentiment Analysis")
sentiment = gemini_result.get('sentiment_analysis', {})
st.write(f"Primary Emotion: {sentiment.get('primary_emotion', 'N/A')}")
st.write(f"Emotional Intensity: {sentiment.get('emotional_intensity', 'N/A')}/10")
st.write(f"Sensationalism Level: {sentiment.get('sensationalism_level', 'N/A')}")
st.write("Bias Indicators:", ", ".join(sentiment.get('bias_indicators', ['N/A'])))
# Entity Recognition
st.subheader("π Entity Recognition")
entities = gemini_result.get('entity_recognition', {})
st.write(f"Source Credibility: {entities.get('source_credibility', 'N/A')}")
st.write("People:", ", ".join(entities.get('people', ['N/A'])))
st.write("Organizations:", ", ".join(entities.get('organizations', ['N/A'])))
except Exception as e:
st.error("Error processing analysis results")
else:
st.warning("Please enter some text to analyze")
if __name__ == "__main__":
main()
|