File size: 17,416 Bytes
30c7f0c
9963876
30c7f0c
94a65e4
 
a355e59
94a65e4
 
207a2e4
 
5e58061
 
207a2e4
1a2b17f
30c7f0c
94a65e4
1a2b17f
 
 
 
 
 
 
 
 
 
 
94a65e4
 
 
5e58061
 
 
 
1c838ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e58061
 
 
 
 
 
 
 
 
9963876
1c838ea
 
 
 
 
 
 
 
 
 
 
 
 
9963876
 
 
 
1c838ea
9963876
 
 
1c838ea
 
9963876
 
 
 
 
 
 
 
5e58061
1c838ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e58061
1c838ea
5e58061
 
1c838ea
 
5e58061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c838ea
 
5e58061
 
1c838ea
 
 
 
 
 
 
 
 
 
5e58061
 
1c838ea
5e58061
 
 
 
 
 
1c838ea
5e58061
 
 
 
 
 
 
 
 
 
 
 
 
30c7f0c
94a65e4
5ac49d2
94a65e4
 
85e3b89
 
 
94a65e4
 
 
 
 
 
 
 
c422cb8
94a65e4
 
 
 
 
df7ee24
e9db226
df7ee24
 
94a65e4
df7ee24
 
 
 
 
 
 
 
 
0e5ed12
 
 
df7ee24
 
0e5ed12
 
 
df7ee24
 
 
 
 
 
 
 
 
 
21bc2b4
 
709d77e
15e4be7
94a65e4
c37cf7b
94a65e4
 
 
c37cf7b
 
 
 
94a65e4
df7ee24
 
 
 
 
 
94a65e4
21bc2b4
60631d5
21bc2b4
98e05ff
 
 
 
 
1196075
 
 
 
 
 
 
 
 
 
 
21bc2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116a946
21bc2b4
 
 
94a65e4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import streamlit as st
import random

# Page configuration
st.set_page_config(
    page_title="Nexus NLP News Classifier"
)

import pandas as pd
from final import *
from pydantic import BaseModel
import plotly.graph_objects as go

# Update the initialize_models function
@st.cache_resource
def initialize_models():
    try:
        nlp = spacy.load("en_core_web_sm")
    except:
        spacy.cli.download("en_core_web_sm")
        nlp = spacy.load("en_core_web_sm")
    
    model_path = "./results/checkpoint-753"
    tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
    model = AutoModelForSequenceClassification.from_pretrained(model_path)
    model.eval()
    
    knowledge_graph = load_knowledge_graph()
    return nlp, tokenizer, model, knowledge_graph


class NewsInput(BaseModel):
    text: str

# def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
#     kg_builder = KnowledgeGraphBuilder()
    
#     # Get prediction
#     prediction, _ = predict_with_model(text, tokenizer, model)
#     is_fake = prediction == "FAKE"
    
#     # Update knowledge graph
#     kg_builder.update_knowledge_graph(text, not is_fake, nlp)

#     # Randomly select subset of edges (e.g. 10% of edges)
#     edges = list(kg_builder.knowledge_graph.edges())
#     selected_edges = random.sample(edges, k=int(len(edges) * 0.3))
    
#     # Create a new graph with selected edges
#     selected_graph = nx.DiGraph()
#     selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
#     selected_graph.add_edges_from(selected_edges)
    
#     pos = nx.spring_layout(selected_graph)
    
#     edge_trace = go.Scatter(
#         x=[], y=[],
#         line=dict(
#             width=2, 
#             color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
#         ),
#         hoverinfo='none',
#         mode='lines'
#     )
    
#     # Create visualization
#     pos = nx.spring_layout(kg_builder.knowledge_graph)
    
#     edge_trace = go.Scatter(
#         x=[], y=[],
#         line=dict(
#             width=2,
#             color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
#         ),
#         hoverinfo='none',
#         mode='lines'
#     )
    
#     node_trace = go.Scatter(
#         x=[], y=[],
#         mode='markers+text',
#         hoverinfo='text',
#         textposition='top center',
#         marker=dict(
#             size=15,
#             color='white',
#             line=dict(width=2, color='black')
#         ),
#         text=[]
#     )
    
#     # Add edges
#     for edge in selected_graph.edges():
#         x0, y0 = pos[edge[0]]
#         x1, y1 = pos[edge[1]]
#         edge_trace['x'] += (x0, x1, None)
#         edge_trace['y'] += (y0, y1, None)
    
#     # Add nodes
#     for node in kg_builder.knowledge_graph.nodes():
#         x, y = pos[node]
#         node_trace['x'] += (x,)
#         node_trace['y'] += (y,)
#         node_trace['text'] += (node,)
    
#     fig = go.Figure(
#         data=[edge_trace, node_trace],
#         layout=go.Layout(
#             showlegend=False,
#             hovermode='closest',
#             margin=dict(b=0,l=0,r=0,t=0),
#             xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#             yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
#             plot_bgcolor='rgba(0,0,0,0)',
#             paper_bgcolor='rgba(0,0,0,0)'
#         )
#     )
    
#     return fig

def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
    kg_builder = KnowledgeGraphBuilder()
    
    # Get prediction
    prediction, _ = predict_with_model(text, tokenizer, model)
    is_fake = prediction == "FAKE"
    
    # Update knowledge graph
    kg_builder.update_knowledge_graph(text, not is_fake, nlp)

    # Get all edges from the knowledge graph
    all_edges = list(kg_builder.knowledge_graph.edges())
    total_edges = len(all_edges)
    
    # Select only 50% of edges to display
    display_edge_count = int(total_edges * 0.5)
    display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
    
    # Determine how many edges should be the opposite color (15% of displayed edges)
    opposite_color_count = int(len(display_edges) * 0.15)
    
    # Randomly select which edges will have the opposite color
    opposite_color_edges = set(random.sample(display_edges, k=opposite_color_count))
    
    # Create a new graph with selected edges
    selected_graph = nx.DiGraph()
    selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
    selected_graph.add_edges_from(display_edges)
    
    pos = nx.spring_layout(selected_graph)
    
    # Create two edge traces - one for dominant color, one for opposite color
    dominant_edge_trace = go.Scatter(
        x=[], y=[],
        line=dict(
            width=2, 
            color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
        ),
        hoverinfo='none',
        mode='lines'
    )
    
    opposite_edge_trace = go.Scatter(
        x=[], y=[],
        line=dict(
            width=2, 
            color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)'
        ),
        hoverinfo='none',
        mode='lines'
    )
    
    node_trace = go.Scatter(
        x=[], y=[],
        mode='markers+text',
        hoverinfo='text',
        textposition='top center',
        marker=dict(
            size=15,
            color='white',
            line=dict(width=2, color='black')
        ),
        text=[]
    )
    
    # Add edges with appropriate colors
    for edge in display_edges:
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        
        if edge in opposite_color_edges:
            opposite_edge_trace['x'] += (x0, x1, None)
            opposite_edge_trace['y'] += (y0, y1, None)
        else:
            dominant_edge_trace['x'] += (x0, x1, None)
            dominant_edge_trace['y'] += (y0, y1, None)
    
    # Add nodes
    for node in selected_graph.nodes():
        x, y = pos[node]
        node_trace['x'] += (x,)
        node_trace['y'] += (y,)
        node_trace['text'] += (node,)
    
    fig = go.Figure(
        data=[dominant_edge_trace, opposite_edge_trace, node_trace],
        layout=go.Layout(
            showlegend=False,
            hovermode='closest',
            margin=dict(b=0,l=0,r=0,t=0),
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            plot_bgcolor='rgba(0,0,0,0)',
            paper_bgcolor='rgba(0,0,0,0)'
        )
    )
    
    return fig

def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
    kg_builder = KnowledgeGraphBuilder()
    
    # Get prediction
    prediction, _ = predict_with_model(text, tokenizer, model)
    is_fake = prediction == "FAKE"
    
    # Update knowledge graph
    kg_builder.update_knowledge_graph(text, not is_fake, nlp)

    # Get all edges from the knowledge graph
    all_edges = list(kg_builder.knowledge_graph.edges())
    total_edges = len(all_edges)
    
    # Select only 60% of edges to display (0.3 + 0.15 + 0.15)
    display_edge_count = int(total_edges * 0.6)
    display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
    
    # Determine edge counts for each color
    primary_color_count = int(total_edges * 0.3)  # 30% primary color (green for real, red for fake)
    opposite_color_count = int(total_edges * 0.15)  # 15% opposite color
    orange_color_count = int(total_edges * 0.15)  # 15% orange
    
    # Ensure we don't exceed the number of display edges
    total_colored = primary_color_count + opposite_color_count + orange_color_count
    if total_colored > len(display_edges):
        ratio = len(display_edges) / total_colored
        primary_color_count = int(primary_color_count * ratio)
        opposite_color_count = int(opposite_color_count * ratio)
        orange_color_count = int(orange_color_count * ratio)
    
    # Shuffle display edges to ensure random distribution
    random.shuffle(display_edges)
    
    # Assign colors to edges
    primary_color_edges = set(display_edges[:primary_color_count])
    opposite_color_edges = set(display_edges[primary_color_count:primary_color_count+opposite_color_count])
    orange_color_edges = set(display_edges[primary_color_count+opposite_color_count:
                                          primary_color_count+opposite_color_count+orange_color_count])
    
    # Create a new graph with selected edges
    selected_graph = nx.DiGraph()
    selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
    selected_graph.add_edges_from(display_edges)
    
    pos = nx.spring_layout(selected_graph)
    
    # Create three edge traces - primary, opposite, and orange
    primary_edge_trace = go.Scatter(
        x=[], y=[],
        line=dict(
            width=2, 
            color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'  # Red if fake, green if real
        ),
        hoverinfo='none',
        mode='lines'
    )
    
    opposite_edge_trace = go.Scatter(
        x=[], y=[],
        line=dict(
            width=2, 
            color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)'  # Green if fake, red if real
        ),
        hoverinfo='none',
        mode='lines'
    )
    
    orange_edge_trace = go.Scatter(
        x=[], y=[],
        line=dict(
            width=2, 
            color='rgba(255,165,0,0.7)'  # Orange
        ),
        hoverinfo='none',
        mode='lines'
    )
    
    node_trace = go.Scatter(
        x=[], y=[],
        mode='markers+text',
        hoverinfo='text',
        textposition='top center',
        marker=dict(
            size=15,
            color='white',
            line=dict(width=2, color='black')
        ),
        text=[]
    )
    
    # Add edges with appropriate colors
    for edge in display_edges:
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        
        if edge in primary_color_edges:
            primary_edge_trace['x'] += (x0, x1, None)
            primary_edge_trace['y'] += (y0, y1, None)
        elif edge in opposite_color_edges:
            opposite_edge_trace['x'] += (x0, x1, None)
            opposite_edge_trace['y'] += (y0, y1, None)
        elif edge in orange_color_edges:
            orange_edge_trace['x'] += (x0, x1, None)
            orange_edge_trace['y'] += (y0, y1, None)
    
    # Add nodes
    for node in selected_graph.nodes():
        x, y = pos[node]
        node_trace['x'] += (x,)
        node_trace['y'] += (y,)
        node_trace['text'] += (node,)
    
    fig = go.Figure(
        data=[primary_edge_trace, opposite_edge_trace, orange_edge_trace, node_trace],
        layout=go.Layout(
            showlegend=False,
            hovermode='closest',
            margin=dict(b=0,l=0,r=0,t=0),
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            plot_bgcolor='rgba(0,0,0,0)',
            paper_bgcolor='rgba(0,0,0,0)'
        )
    )
    
    return fig

# Streamlit UI
def main():
    st.title("Nexus NLP News Classifier")
    st.write("Enter news text below to analyze its authenticity")

    # Initialize models
    nlp, tokenizer, model, knowledge_graph = initialize_models()

    # Text input area
    news_text = st.text_area("News Text", height=200)

    if st.button("Analyze"):
        if news_text:
            with st.spinner("Analyzing..."):
                # Get predictions from all models
                ml_prediction, ml_confidence = predict_with_model(news_text, tokenizer, model)
                kg_prediction, kg_confidence = predict_with_knowledge_graph(news_text, knowledge_graph, nlp)
                
                # Update knowledge graph
                update_knowledge_graph(news_text, ml_prediction == "REAL", knowledge_graph, nlp)
                
                # Get Gemini analysis
                # Get Gemini analysis with retries
                max_retries = 10
                retry_count = 0
                gemini_result = None

                while retry_count < max_retries:
                    try:
                        gemini_model = setup_gemini()
                        gemini_result = analyze_content_gemini(gemini_model, news_text)
                        
                        # Check if we got valid results
                        if gemini_result and gemini_result.get('gemini_analysis'):
                            break
                            
                    except Exception as e:
                        st.error(f"Gemini API error: {str(e)}")
                        print(f"Gemini error: {str(e)}")
                        
                    retry_count += 1
                    import time
                    time.sleep(1)  # Add a 1-second delay between retries

                    
                # Use default values if all retries failed
                if not gemini_result:
                    gemini_result = {
                        "gemini_analysis": {
                            "predicted_classification": "UNCERTAIN",
                            "confidence_score": "50",
                            "reasoning": ["Analysis temporarily unavailable"]
                        }
                    }

                # Display metrics in columns
                col1 = st.columns(1)[0]

                with col1:
                    st.subheader("ML Model and Knowedge Graph Analysis")
                    st.metric("Prediction", ml_prediction)
                    st.metric("Confidence", f"{ml_confidence:.2f}%")

                # with col2:
                #     st.subheader("Knowledge Graph Analysis")
                #     st.metric("Prediction", kg_prediction)
                #     st.metric("Confidence", f"{kg_confidence:.2f}%")

                # with col3:
                #     st.subheader("Gemini Analysis")
                #     gemini_pred = gemini_result["gemini_analysis"]["predicted_classification"]
                #     gemini_conf = gemini_result["gemini_analysis"]["confidence_score"]
                #     st.metric("Prediction", gemini_pred)
                #     st.metric("Confidence", f"{gemini_conf}%")

                # Single expander for all analysis details
                with st.expander("Click here to get Detailed Analysis"):
                    try:
                        # Analysis Reasoning
                        st.subheader("πŸ’­ Analysis Reasoning")
                        for point in gemini_result.get('gemini_analysis', {}).get('reasoning', ['N/A']):
                            st.write(f"β€’ {point}")
                            
                        # Named Entities from spaCy
                        st.subheader("🏷️ Named Entities")
                        entities = extract_entities(news_text, nlp)
                        df = pd.DataFrame(entities, columns=["Entity", "Type"])
                        st.dataframe(df)
                        
                        # Knowledge Graph Visualization
                        st.subheader("πŸ•ΈοΈ Knowledge Graph")
                        fig = generate_knowledge_graph_viz(news_text, nlp, tokenizer, model)
                        st.plotly_chart(fig, use_container_width=True)
                        
                        # Text Classification
                        st.subheader("πŸ“ Text Classification")
                        text_class = gemini_result.get('text_classification', {})
                        st.write(f"Category: {text_class.get('category', 'N/A')}")
                        st.write(f"Writing Style: {text_class.get('writing_style', 'N/A')}")
                        st.write(f"Target Audience: {text_class.get('target_audience', 'N/A')}")
                        st.write(f"Content Type: {text_class.get('content_type', 'N/A')}")
                        
                        # Sentiment Analysis
                        st.subheader("🎭 Sentiment Analysis")
                        sentiment = gemini_result.get('sentiment_analysis', {})
                        st.write(f"Primary Emotion: {sentiment.get('primary_emotion', 'N/A')}")
                        st.write(f"Emotional Intensity: {sentiment.get('emotional_intensity', 'N/A')}/10")
                        st.write(f"Sensationalism Level: {sentiment.get('sensationalism_level', 'N/A')}")
                        st.write("Bias Indicators:", ", ".join(sentiment.get('bias_indicators', ['N/A'])))
                        
                        # Entity Recognition
                        st.subheader("πŸ” Entity Recognition")
                        entities = gemini_result.get('entity_recognition', {})
                        st.write(f"Source Credibility: {entities.get('source_credibility', 'N/A')}")
                        st.write("People:", ", ".join(entities.get('people', ['N/A'])))
                        st.write("Organizations:", ", ".join(entities.get('organizations', ['N/A'])))
                        
                            
                    except Exception as e:
                        st.error("Error processing analysis results")

        else:
            st.warning("Please enter some text to analyze")

if __name__ == "__main__":
    main()