HebaAllah commited on
Commit
044cae8
·
verified ·
1 Parent(s): e95457d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tensorflow as tf
3
+ import gradio as gr
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+ # Disable all GPUS
8
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
9
+ current_directory = os.path.abspath(os.path.dirname(__file__))
10
+
11
+ # Load your pre-trained model
12
+ def load_model():
13
+ model = tf.keras.models.load_model(os.path.join(current_directory, "model.h5")) # Replace with your model's path
14
+ return model
15
+
16
+ model = load_model()
17
+
18
+ # Define the labels (categories)
19
+ labels = ['Water', 'Cloudy', 'Desert', 'Green Area']
20
+
21
+ # Function to preprocess the image and predict the class
22
+ def classify_image(image):
23
+ # Ensure the image is in PIL format
24
+ if not isinstance(image, Image.Image):
25
+ image = Image.fromarray(image)
26
+
27
+ img = image.resize((128, 128)) # Resize the image
28
+ img = np.array(img) / 255.0 # Normalize the image
29
+ img = np.expand_dims(img, axis=0) # Add batch dimension
30
+ prediction = model.predict(img)
31
+ predicted_class = labels[np.argmax(prediction)]
32
+
33
+ # Prepare output with probabilities
34
+ return {labels[i]: float(prediction[0][i]) for i in range(len(labels))}
35
+
36
+ # Define the Gradio interface
37
+ image_input = gr.Image(type="pil") # Use "pil" as the type for PIL images
38
+ label_output = gr.Label(num_top_classes=4)
39
+
40
+ # Launch the interface
41
+ gr.Interface(fn=classify_image,
42
+ inputs=image_input,
43
+ outputs=label_output,
44
+ title="Satellite Image Classification",
45
+ description="Classify satellite images into four types: Water, Cloudy, Desert, Green Area").launch()